IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33593-2.html
   My bibliography  Save this article

The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase

Author

Listed:
  • Jun Gyou Park

    (Gwangju Institute of Science and Technology (GIST))

  • Songwon Kim

    (Gwangju Institute of Science and Technology (GIST))

  • Eunhong Jang

    (Gwangju Institute of Science and Technology (GIST))

  • Seung Hun Choi

    (Gwangju Institute of Science and Technology (GIST))

  • Hyunsu Han

    (Gwangju Institute of Science and Technology (GIST))

  • Seulgi Ju

    (Gwangju Institute of Science and Technology (GIST))

  • Ji Won Kim

    (Pohang University of Science and Technology (POSTECH))

  • Da Sol Min

    (Gwangju Institute of Science and Technology (GIST))

  • Mi Sun Jin

    (Gwangju Institute of Science and Technology (GIST))

Abstract

TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.

Suggested Citation

  • Jun Gyou Park & Songwon Kim & Eunhong Jang & Seung Hun Choi & Hyunsu Han & Seulgi Ju & Ji Won Kim & Da Sol Min & Mi Sun Jin, 2022. "The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33593-2
    DOI: 10.1038/s41467-022-33593-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33593-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33593-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaodi Tang & Shenghai Chang & Qinghua Luo & Zhengyu Zhang & Wen Qiao & Caihuang Xu & Changbin Zhang & Yang Niu & Wenxian Yang & Ting Wang & Zhibo Zhang & Xiaofeng Zhu & Xiawei Wei & Changjiang Dong &, 2019. "Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Michael L. Oldham & Richard K. Hite & Alanna M. Steffen & Ermelinda Damko & Zongli Li & Thomas Walz & Jue Chen, 2016. "A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter," Nature, Nature, vol. 529(7587), pages 537-540, January.
    3. Ioannis Manolaridis & Scott M. Jackson & Nicholas M. I. Taylor & Julia Kowal & Henning Stahlberg & Kaspar P. Locher, 2018. "Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states," Nature, Nature, vol. 563(7731), pages 426-430, November.
    4. Susanne Hofmann & Dovile Januliene & Ahmad R. Mehdipour & Christoph Thomas & Erich Stefan & Stefan Brüchert & Benedikt T. Kuhn & Eric R. Geertsma & Gerhard Hummer & Robert Tampé & Arne Moeller, 2019. "Conformation space of a heterodimeric ABC exporter under turnover conditions," Nature, Nature, vol. 571(7766), pages 580-583, July.
    5. Mi Sun Jin & Michael L. Oldham & Qiuju Zhang & Jue Chen, 2012. "Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans," Nature, Nature, vol. 490(7421), pages 566-569, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao-Xu Mao & Zhi-Peng Chen & Liang Wang & Jie Wang & Cong-Zhao Zhou & Wen-Tao Hou & Yuxing Chen, 2024. "Transport mechanism of human bilirubin transporter ABCC2 tuned by the inter-module regulatory domain," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyu Tang & Matt Sinclair & Hale S. Hasdemir & Richard A. Stein & Erkan Karakas & Emad Tajkhorshid & Hassane S. Mchaourab, 2023. "Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Chancievan Thangaratnarajah & Mark Nijland & Luís Borges-Araújo & Aike Jeucken & Jan Rheinberger & Siewert J. Marrink & Paulo C. T. Souza & Cristina Paulino & Dirk J. Slotboom, 2023. "Expulsion mechanism of the substrate-translocating subunit in ECF transporters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Nitesh Kumar Khandelwal & Thomas M. Tomasiak, 2024. "Structural basis for autoinhibition by the dephosphorylated regulatory domain of Ycf1," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Megan L O’Mara & Alan E Mark, 2014. "Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-14, March.
    6. Jiao Li & Wan Zheng & Ming Gu & Long Han & Yanmei Luo & Koukou Yu & Mengxin Sun & Yuliang Zong & Xiuxiu Ma & Bing Liu & Ethan P. Lowder & Deanna L. Mendez & Robert G. Kranz & Kai Zhang & Jiapeng Zhu, 2022. "Structures of the CcmABCD heme release complex at multiple states," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Shin-Gyu Cho & Ji-Hyun Kim & Ji-eun Lee & In-Jung Choi & Myungchul Song & Kimleng Chuon & Jin-gon Shim & Kun-Wook Kang & Kwang-Hwan Jung, 2024. "Heliorhodopsin-mediated light-modulation of ABC transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Mathieu Botte & Dongchun Ni & Stephan Schenck & Iwan Zimmermann & Mohamed Chami & Nicolas Bocquet & Pascal Egloff & Denis Bucher & Matilde Trabuco & Robert K. Y. Cheng & Janine D. Brunner & Markus A. , 2022. "Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Sille Remm & Dario Vecchis & Jendrik Schöppe & Cedric A. J. Hutter & Imre Gonda & Michael Hohl & Simon Newstead & Lars V. Schäfer & Markus A. Seeger, 2023. "Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Søren K. Amstrup & Sui Ching Ong & Nicholas Sofos & Jesper L. Karlsen & Ragnhild B. Skjerning & Thomas Boesen & Jan J. Enghild & Bjarne Hove-Jensen & Ditlev E. Brodersen, 2023. "Structural remodelling of the carbon–phosphorus lyase machinery by a dual ABC ATPase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Ying Huang & Chenyang Xue & Ruiqian Bu & Cang Wu & Jiachen Li & Jinqiu Zhang & Jinyu Chen & Zhaoying Shi & Yonglong Chen & Yong Wang & Zhongmin Liu, 2024. "Inhibition and transport mechanisms of the ABC transporter hMRP5," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Xing Chen & Chunyu Yu & Xinhua Liu & Beibei Liu & Xiaodi Wu & Jiajing Wu & Dong Yan & Lulu Han & Zifan Tang & Xinyi Yuan & Jianqiu Wang & Yue Wang & Shumeng Liu & Lin Shan & Yongfeng Shang, 2022. "Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Yao-Xu Mao & Zhi-Peng Chen & Liang Wang & Jie Wang & Cong-Zhao Zhou & Wen-Tao Hou & Yuxing Chen, 2024. "Transport mechanism of human bilirubin transporter ABCC2 tuned by the inter-module regulatory domain," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Nitesh Kumar Khandelwal & Cinthia R. Millan & Samantha I. Zangari & Samantha Avila & Dewight Williams & Tarjani M. Thaker & Thomas M. Tomasiak, 2022. "The structural basis for regulation of the glutathione transporter Ycf1 by regulatory domain phosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Tomoka Gose & Heather M. Aitken & Yao Wang & John Lynch & Evadnie Rampersaud & Yu Fukuda & Medb Wills & Stefanie A. Baril & Robert C. Ford & Anang Shelat & Megan L. O’Mara & John D. Schuetz, 2023. "The net electrostatic potential and hydration of ABCG2 affect substrate transport," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33593-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.