IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50349-2.html
   My bibliography  Save this article

Allosteric nanobodies to study the interactions between SOS1 and RAS

Author

Listed:
  • Baptiste Fischer

    (CBMN
    European Institute of Chemistry and Biology (IECB))

  • Tomasz Uchański

    (VIB
    Vrije Universiteit Brussel)

  • Aidana Sheryazdanova

    (VIB-KU Leuven Center for Cancer Biology
    KU Leuven)

  • Simon Gonzalez

    (Vrije Universiteit Brussel)

  • Alexander N. Volkov

    (VIB
    VUB)

  • Elke Brosens

    (VIB
    Vrije Universiteit Brussel)

  • Thomas Zögg

    (VIB
    Vrije Universiteit Brussel)

  • Valentina Kalichuk

    (VIB
    Vrije Universiteit Brussel)

  • Steven Ballet

    (Vrije Universiteit Brussel)

  • Wim Versées

    (VIB
    Vrije Universiteit Brussel)

  • Anna A. Sablina

    (VIB-KU Leuven Center for Cancer Biology
    KU Leuven)

  • Els Pardon

    (VIB
    Vrije Universiteit Brussel)

  • Alexandre Wohlkönig

    (VIB
    Vrije Universiteit Brussel)

  • Jan Steyaert

    (VIB
    Vrije Universiteit Brussel)

Abstract

Protein-protein interactions (PPIs) are central in cell metabolism but research tools for the structural and functional characterization of these PPIs are often missing. Here we introduce broadly applicable immunization (Cross-link PPIs and immunize llamas, ChILL) and selection strategies (Display and co-selection, DisCO) for the discovery of diverse nanobodies that either stabilize or disrupt PPIs in a single experiment. We apply ChILL and DisCO to identify competitive, connective, or fully allosteric nanobodies that inhibit or facilitate the formation of the SOS1•RAS complex and modulate the nucleotide exchange rate on this pivotal GTPase in vitro as well as RAS signalling in cellulo. One of these connective nanobodies fills a cavity that was previously identified as the binding pocket for a series of therapeutic lead compounds. The long complementarity-determining region (CDR3) that penetrates this binding pocket serves as pharmacophore for extending the repertoire of potential leads.

Suggested Citation

  • Baptiste Fischer & Tomasz Uchański & Aidana Sheryazdanova & Simon Gonzalez & Alexander N. Volkov & Elke Brosens & Thomas Zögg & Valentina Kalichuk & Steven Ballet & Wim Versées & Anna A. Sablina & Els, 2024. "Allosteric nanobodies to study the interactions between SOS1 and RAS," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50349-2
    DOI: 10.1038/s41467-024-50349-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50349-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50349-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Ann Boriack-Sjodin & S. Mariana Margarit & Dafna Bar-Sagi & John Kuriyan, 1998. "The structural basis of the activation of Ras by Sos," Nature, Nature, vol. 394(6691), pages 337-343, July.
    2. Roshanak Irannejad & Jin C. Tomshine & Jon R. Tomshine & Michael Chevalier & Jacob P. Mahoney & Jan Steyaert & Søren G. F. Rasmussen & Roger K. Sunahara & Hana El-Samad & Bo Huang & Mark von Zastrow, 2013. "Conformational biosensors reveal GPCR signalling from endosomes," Nature, Nature, vol. 495(7442), pages 534-538, March.
    3. Dean P. Staus & Ryan T. Strachan & Aashish Manglik & Biswaranjan Pani & Alem W. Kahsai & Tae Hun Kim & Laura M. Wingler & Seungkirl Ahn & Arnab Chatterjee & Ali Masoudi & Andrew C. Kruse & Els Pardon , 2016. "Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation," Nature, Nature, vol. 535(7612), pages 448-452, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Duan & Peiyu Xu & Huibing Zhang & Xiaodong Luan & Jiaqi Yang & Xinheng He & Chunyou Mao & Dan-Dan Shen & Yujie Ji & Xi Cheng & Hualiang Jiang & Yi Jiang & Shuyang Zhang & Yan Zhang & H. Eric Xu, 2023. "Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Harrison M. York & Kunaal Joshi & Charles S. Wright & Laura Z. Kreplin & Samuel J. Rodgers & Ullhas K. Moorthi & Hetvi Gandhi & Abhishek Patil & Christina A. Mitchell & Srividya Iyer-Biswas & Senthil , 2023. "Deterministic early endosomal maturations emerge from a stochastic trigger-and-convert mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Shane C. Wright & Aikaterini Motso & Stefania Koutsilieri & Christian M. Beusch & Pierre Sabatier & Alessandro Berghella & Élodie Blondel-Tepaz & Kimberley Mangenot & Ioannis Pittarokoilis & Despoina-, 2023. "GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Mithu Baidya & Madhu Chaturvedi & Hemlata Dwivedi-Agnihotri & Ashutosh Ranjan & Dominic Devost & Yoon Namkung & Tomasz Maciej Stepniewski & Shubhi Pandey & Minakshi Baruah & Bhanupriya Panigrahi & Par, 2022. "Allosteric modulation of GPCR-induced β-arrestin trafficking and signaling by a synthetic intrabody," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Tobias Benkel & Mirjam Zimmermann & Julian Zeiner & Sergi Bravo & Nicole Merten & Victor Jun Yu Lim & Edda Sofie Fabienne Matthees & Julia Drube & Elke Miess-Tanneberg & Daniela Malan & Martyna Szpako, 2022. "How Carvedilol activates β2-adrenoceptors," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Arum Wu & David Salom & John D. Hong & Aleksander Tworak & Kohei Watanabe & Els Pardon & Jan Steyaert & Hideki Kandori & Kota Katayama & Philip D. Kiser & Krzysztof Palczewski, 2023. "Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Abhijeet Kapoor & Alex Travesset, 2014. "Mechanism of the Exchange Reaction in HRAS from Multiscale Modeling," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    8. Teklab Gebregiworgis & Yoshihito Kano & Jonathan St-Germain & Nikolina Radulovich & Molly L. Udaskin & Ahmet Mentes & Richard Huang & Betty P. K. Poon & Wenguang He & Ivette Valencia-Sama & Claire M. , 2021. "The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Dylan Scott Eiger & Noelia Boldizsar & Christopher Cole Honeycutt & Julia Gardner & Stephen Kirchner & Chloe Hicks & Issac Choi & Uyen Pham & Kevin Zheng & Anmol Warman & Jeffrey S. Smith & Jennifer Y, 2022. "Location bias contributes to functionally selective responses of biased CXCR3 agonists," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Alexei Sirbu & Marc Bathe-Peters & Jothi L. M. Kumar & Asuka Inoue & Martin J. Lohse & Paolo Annibale, 2024. "Cell swelling enhances ligand-driven β-adrenergic signaling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Michael Schoof & Lan Wang & J. Zachery Cogan & Rosalie E. Lawrence & Morgane Boone & Jennifer Deborah Wuerth & Adam Frost & Peter Walter, 2021. "Viral evasion of the integrated stress response through antagonism of eIF2-P binding to eIF2B," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Thomas Eden & Alessa Z. Schaffrath & Janusz Wesolowski & Tobias Stähler & Natalie Tode & Nathalie Richter & Waldemar Schäfer & Julia Hambach & Irm Hermans-Borgmeyer & Jannis Woens & Camille M. Gall & , 2024. "Generation of nanobodies from transgenic ‘LamaMice’ lacking an endogenous immunoglobulin repertoire," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50349-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.