IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33556-7.html
   My bibliography  Save this article

A unique Toxoplasma gondii haplotype accompanied the global expansion of cats

Author

Listed:
  • Lokman Galal

    (Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT—Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth)

  • Frédéric Ariey

    (Université de Paris, Institut Cochin, Inserm U1016, Service de Parasitologie Hôpital Cochin)

  • Meriadeg Ar Gouilh

    (DYNAMICURE U1311 INSERM, Université de Caen Normandie, UNICAEN, UNIROUEN
    Laboratoire de Virologie, Centre Hospitalo-Universitaire, Avenue Georges Clémenceau
    Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224—CNRS 5290))

  • Marie-Laure Dardé

    (Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT—Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth
    Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Center (BRC), Centre Hospitalier-Universitaire Dupuytren)

  • Azra Hamidović

    (Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT—Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth)

  • Franck Letourneur

    (Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris)

  • Franck Prugnolle

    (IRL REHABS, International Research Laboratory REHABS, CNRS-NMU-UCBL, Nelson Mandela University George Campus)

  • Aurélien Mercier

    (Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT—Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth
    Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Center (BRC), Centre Hospitalier-Universitaire Dupuytren)

Abstract

Toxoplasma gondii is a cyst-forming apicomplexan parasite of virtually all warm-blooded species, with all true cats (Felidae) as definitive hosts. It is the etiologic agent of toxoplasmosis, a disease causing substantial public health burden worldwide. Few intercontinental clonal lineages represent the large majority of isolates worldwide. Little is known about the evolutionary forces driving the success of these lineages, the timing and the mechanisms of their global dispersal. In this study, we analyse a set of 156 genomes and we provide estimates of T. gondii mutation rate and generation time. We elucidate how the evolution of T. gondii populations is intimately linked to the major events that have punctuated the recent history of cats. We show that a unique haplotype, whose length represents only 0.16% of the whole T. gondii genome, is common to all intercontinental lineages and hybrid populations derived from these lineages. This haplotype has accompanied wildcats (Felis silvestris) during their emergence from the wild to domestic settlements, their dispersal in the Old World, and their expansion in the last five centuries to the Americas. The selection of this haplotype is most parsimoniously explained by its role in sexual reproduction of T. gondii in domestic cats.

Suggested Citation

  • Lokman Galal & Frédéric Ariey & Meriadeg Ar Gouilh & Marie-Laure Dardé & Azra Hamidović & Franck Letourneur & Franck Prugnolle & Aurélien Mercier, 2022. "A unique Toxoplasma gondii haplotype accompanied the global expansion of cats," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33556-7
    DOI: 10.1038/s41467-022-33556-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33556-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33556-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Russell Corbett-Detig & Rasmus Nielsen, 2017. "A Hidden Markov Model Approach for Simultaneously Estimating Local Ancestry and Admixture Time Using Next Generation Sequence Data in Samples of Arbitrary Ploidy," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-40, January.
    2. Alexei J Drummond & Simon Y W Ho & Matthew J Phillips & Andrew Rambaut, 2006. "Relaxed Phylogenetics and Dating with Confidence," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, March.
    3. Daniel John Lawson & Garrett Hellenthal & Simon Myers & Daniel Falush, 2012. "Inference of Population Structure using Dense Haplotype Data," PLOS Genetics, Public Library of Science, vol. 8(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fumiaki Ihara & Hisako Kyan & Yasuhiro Takashima & Fumiko Ono & Kei Hayashi & Tomohide Matsuo & Makoto Igarashi & Yoshifumi Nishikawa & Kenji Hikosaka & Hirokazu Sakamoto & Shota Nakamura & Daisuke Mo, 2024. "Far-East Asian Toxoplasma isolates share ancestry with North and South/Central American recombinant lineages," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    2. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    3. Joachim Schmidt & Lars Opgenoorth & Steffen Höll & Ralf Bastrop, 2012. "Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    4. Dinesh Aggarwal & Ben Warne & Aminu S. Jahun & William L. Hamilton & Thomas Fieldman & Louis Plessis & Verity Hill & Beth Blane & Emmeline Watkins & Elizabeth Wright & Grant Hall & Catherine Ludden & , 2022. "Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Matthieu Bouaziz & Caroline Paccard & Mickael Guedj & Christophe Ambroise, 2012. "SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    6. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    7. Iliana Bista & Jonathan M. D. Wood & Thomas Desvignes & Shane A. McCarthy & Michael Matschiner & Zemin Ning & Alan Tracey & James Torrance & Ying Sims & William Chow & Michelle Smith & Karen Oliver & , 2023. "Genomics of cold adaptations in the Antarctic notothenioid fish radiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Elisa Bellucci & Andrea Benazzo & Chunming Xu & Elena Bitocchi & Monica Rodriguez & Saleh Alseekh & Valerio Di Vittori & Tania Gioia & Kerstin Neumann & Gaia Cortinovis & Giulia Frascarelli & Ester Mu, 2023. "Selection and adaptive introgression guided the complex evolutionary history of the European common bean," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Nan Song & Ai-Ping Liang, 2013. "A Preliminary Molecular Phylogeny of Planthoppers (Hemiptera: Fulgoroidea) Based on Nuclear and Mitochondrial DNA Sequences," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    11. Saúl F. Domínguez-Guerrero & Fausto R. Méndez-de la Cruz & Norma L. Manríquez-Morán & Mark E. Olson & Patricia Galina-Tessaro & Diego M. Arenas-Moreno & Adán Bautista- del Moral & Adriana Benítez-Vill, 2022. "Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. James A Watson & Aimee R Taylor & Elizabeth A Ashley & Arjen Dondorp & Caroline O Buckee & Nicholas J White & Chris C Holmes, 2020. "A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-23, October.
    13. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    14. Yankuo Sun & Jiabao Xing & Samuel L. Hong & Nena Bollen & Sijia Xu & Yue Li & Jianhao Zhong & Xiaopeng Gao & Dihua Zhu & Jing Liu & Lang Gong & Lei Zhou & Tongqing An & Mang Shi & Heng Wang & Guy Bael, 2024. "Untangling lineage introductions, persistence and transmission drivers of HP-PRRSV sublineage 8.7," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Mohammad Hossein Olyaee & Alireza Khanteymoori & Khosrow Khalifeh, 2020. "A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
    17. Mekala Sundaram & Janna R Willoughby & Nathanael I Lichti & Michael A Steele & Robert K Swihart, 2015. "Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    18. Alice M. Clement & Richard Cloutier & Michael S. Y. Lee & Benedict King & Olivia Vanhaesebroucke & Corey J. A. Bradshaw & Hugo Dutel & Kate Trinajstic & John A. Long, 2024. "A Late Devonian coelacanth reconfigures actinistian phylogeny, disparity, and evolutionary dynamics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Mercedes M Burns & Marshal Hedin & Jeffrey W Shultz, 2013. "Comparative Analyses of Reproductive Structures in Harvestmen (Opiliones) Reveal Multiple Transitions from Courtship to Precopulatory Antagonism," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    20. Jonathon D. Gass & Nichola J. Hill & Lambodhar Damodaran & Elena N. Naumova & Felicia B. Nutter & Jonathan A. Runstadler, 2023. "Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016–Early 2022," IJERPH, MDPI, vol. 20(11), pages 1-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33556-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.