IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008432.html
   My bibliography  Save this article

UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts

Author

Listed:
  • Alex Diaz-Papkovich
  • Luke Anderson-Trocmé
  • Chief Ben-Eghan
  • Simon Gravel

Abstract

Human populations feature both discrete and continuous patterns of variation. Current analysis approaches struggle to jointly identify these patterns because of modelling assumptions, mathematical constraints, or numerical challenges. Here we apply uniform manifold approximation and projection (UMAP), a non-linear dimension reduction tool, to three well-studied genotype datasets and discover overlooked subpopulations within the American Hispanic population, fine-scale relationships between geography, genotypes, and phenotypes in the UK population, and cryptic structure in the Thousand Genomes Project data. This approach is well-suited to the influx of large and diverse data and opens new lines of inquiry in population-scale datasets.Author summary: The demographic history of human populations features varying geographic and social barriers to mating. Over time, these barriers have led to varying levels of genetic relatedness among individuals. This population structure is informative about human history, and can have a significant impact on studies of medical genetics. Because population structure depends on myriad demographic, ecological, and social forces, a priori visualization is useful to identify subtle patterns of population structure. We use a dimension reduction method—UMAP—to visualize population structure in three genomic datasets and find previously unobserved patterns, revealing fine-scale population structure and illustrating differences between groups in traits such as white blood cell count, height, and FEV1, a measure of lung function. Using UMAP is computationally efficient and can identify fine-scale population structure in large population datasets. We find it particularly useful to reveal phenotypic variation among genetically related populations, and recommend it is a complement to principal component analysis in primary data visualization.

Suggested Citation

  • Alex Diaz-Papkovich & Luke Anderson-Trocmé & Chief Ben-Eghan & Simon Gravel, 2019. "UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-24, November.
  • Handle: RePEc:plo:pgen00:1008432
    DOI: 10.1371/journal.pgen.1008432
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008432
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008432&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel John Lawson & Garrett Hellenthal & Simon Myers & Daniel Falush, 2012. "Inference of Population Structure using Dense Haplotype Data," PLOS Genetics, Public Library of Science, vol. 8(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominic Henn & Dehua Zhao & Dharshan Sivaraj & Artem Trotsyuk & Clark Andrew Bonham & Katharina S. Fischer & Tim Kehl & Tobias Fehlmann & Autumn H. Greco & Hudson C. Kussie & Sylvia E. Moortgat Illouz, 2023. "Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Cristian Groza & Carl Schwendinger-Schreck & Warren A. Cheung & Emily G. Farrow & Isabelle Thiffault & Juniper Lake & William B. Rizzo & Gilad Evrony & Tom Curran & Guillaume Bourque & Tomi Pastinen, 2024. "Pangenome graphs improve the analysis of structural variants in rare genetic diseases," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jeffrey D. Wall & J. Fah Sathirapongsasuti & Ravi Gupta & Asif Rasheed & Radha Venkatesan & Saurabh Belsare & Ramesh Menon & Sameer Phalke & Anuradha Mittal & John Fang & Deepak Tanneeru & Manjari Des, 2023. "South Asian medical cohorts reveal strong founder effects and high rates of homozygosity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Mihail Halachev & Viktoria-Eleni Gountouna & Alison Meynert & Gannie Tzoneva & Alan R. Shuldiner & Colin A. Semple & James F. Wilson, 2024. "Regionally enriched rare deleterious exonic variants in the UK and Ireland," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    2. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    3. Matthieu Bouaziz & Caroline Paccard & Mickael Guedj & Christophe Ambroise, 2012. "SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    4. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    5. Elisa Bellucci & Andrea Benazzo & Chunming Xu & Elena Bitocchi & Monica Rodriguez & Saleh Alseekh & Valerio Di Vittori & Tania Gioia & Kerstin Neumann & Gaia Cortinovis & Giulia Frascarelli & Ester Mu, 2023. "Selection and adaptive introgression guided the complex evolutionary history of the European common bean," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. James A Watson & Aimee R Taylor & Elizabeth A Ashley & Arjen Dondorp & Caroline O Buckee & Nicholas J White & Chris C Holmes, 2020. "A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-23, October.
    7. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    8. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Mohammad Hossein Olyaee & Alireza Khanteymoori & Khosrow Khalifeh, 2020. "A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
    10. Buzbas, Erkan Ozge & Verdu, Paul, 2018. "Inference on admixture fractions in a mechanistic model of recurrent admixture," Theoretical Population Biology, Elsevier, vol. 122(C), pages 149-157.
    11. Oscar Lao & Fan Liu & Andreas Wollstein & Manfred Kayser, 2014. "GAGA: A New Algorithm for Genomic Inference of Geographic Ancestry Reveals Fine Level Population Substructure in Europeans," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-11, February.
    12. David Peris & Emily J. Ubbelohde & Meihua Christina Kuang & Jacek Kominek & Quinn K. Langdon & Marie Adams & Justin A. Koshalek & Amanda Beth Hulfachor & Dana A. Opulente & David J. Hall & Katie Hyma , 2023. "Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Markus Neuditschko & Mehar S Khatkar & Herman W Raadsma, 2012. "NetView: A High-Definition Network-Visualization Approach to Detect Fine-Scale Population Structures from Genome-Wide Patterns of Variation," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    14. Melisa Olave & Alexander Nater & Andreas F. Kautt & Axel Meyer, 2022. "Early stages of sympatric homoploid hybrid speciation in crater lake cichlid fishes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Yedael Y Waldman & Arjun Biddanda & Natalie R Davidson & Paul Billing-Ross & Maya Dubrovsky & Christopher L Campbell & Carole Oddoux & Eitan Friedman & Gil Atzmon & Eran Halperin & Harry Ostrer & Alon, 2016. "The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
    16. Andrea Fulgione & Célia Neto & Ahmed F. Elfarargi & Emmanuel Tergemina & Shifa Ansari & Mehmet Göktay & Herculano Dinis & Nina Döring & Pádraic J. Flood & Sofia Rodriguez-Pacheco & Nora Walden & Marcu, 2022. "Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Sam Tallman & Maria das Dores Sungo & Sílvio Saranga & Sandra Beleza, 2023. "Whole genomes from Angola and Mozambique inform about the origins and dispersals of major African migrations," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Buschbom, Jutta, 2018. "Exploring and validating statistical reliability in forensic conservation genetics," Thünen Reports 63, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    19. Isabel Alves & Joanna Giemza & Michael G. B. Blum & Carolina Bernhardsson & Stéphanie Chatel & Matilde Karakachoff & Aude Pierre & Anthony F. Herzig & Robert Olaso & Martial Monteil & Véronique Gallie, 2024. "Human genetic structure in Northwest France provides new insights into West European historical demography," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Lokman Galal & Frédéric Ariey & Meriadeg Ar Gouilh & Marie-Laure Dardé & Azra Hamidović & Franck Letourneur & Franck Prugnolle & Aurélien Mercier, 2022. "A unique Toxoplasma gondii haplotype accompanied the global expansion of cats," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.