IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44054-9.html
   My bibliography  Save this article

Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms

Author

Listed:
  • Francesca Pennacchietti

    (KTH Royal Institute of Technology)

  • Jonatan Alvelid

    (KTH Royal Institute of Technology)

  • Rodrigo A. Morales

    (Karolinska Institutet and University Hospital
    Center for Molecular Medicine (CMM))

  • Martina Damenti

    (KTH Royal Institute of Technology)

  • Dirk Ollech

    (KTH Royal Institute of Technology)

  • Olena S. Oliinyk

    (Medicum, University of Helsinki)

  • Daria M. Shcherbakova

    (Albert Einstein College of Medicine)

  • Eduardo J. Villablanca

    (Karolinska Institutet and University Hospital
    Center for Molecular Medicine (CMM))

  • Vladislav V. Verkhusha

    (Medicum, University of Helsinki
    Albert Einstein College of Medicine)

  • Ilaria Testa

    (KTH Royal Institute of Technology)

Abstract

Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400–650 nm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650 nm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications.

Suggested Citation

  • Francesca Pennacchietti & Jonatan Alvelid & Rodrigo A. Morales & Martina Damenti & Dirk Ollech & Olena S. Oliinyk & Daria M. Shcherbakova & Eduardo J. Villablanca & Vladislav V. Verkhusha & Ilaria Tes, 2023. "Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44054-9
    DOI: 10.1038/s41467-023-44054-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44054-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44054-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lucas von Chamier & Romain F. Laine & Johanna Jukkala & Christoph Spahn & Daniel Krentzel & Elias Nehme & Martina Lerche & Sara Hernández-Pérez & Pieta K. Mattila & Eleni Karinou & Séamus Holden & Ahm, 2021. "Democratising deep learning for microscopy with ZeroCostDL4Mic," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaarjel K. Narayanasamy & Johanna V. Rahm & Siddharth Tourani & Mike Heilemann, 2022. "Fast DNA-PAINT imaging using a deep neural network," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Rui Chen & Jiasu Xu & Boqian Wang & Yi Ding & Aynur Abdulla & Yiyang Li & Lai Jiang & Xianting Ding, 2024. "SpiDe-Sr: blind super-resolution network for precise cell segmentation and clustering in spatial proteomics imaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Timo Kuhn & Amit N. Landge & David Mörsdorf & Jonas Coßmann & Johanna Gerstenecker & Daniel Čapek & Patrick Müller & J. Christof M. Gebhardt, 2022. "Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Shijia Zhu & Naoto Kubota & Shidan Wang & Tao Wang & Guanghua Xiao & Yujin Hoshida, 2024. "STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Joshua J. Rennick & Cameron J. Nowell & Colin W. Pouton & Angus P. R. Johnston, 2022. "Resolving subcellular pH with a quantitative fluorescent lifetime biosensor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Sara Rojas-Vázquez & Beatriz Lozano-Torres & Alba García-Fernández & Irene Galiana & Ana Perez-Villalba & Pablo Martí-Rodrigo & M. José Palop & Marcia Domínguez & Mar Orzáez & Félix Sancenón & Juan F., 2024. "A renal clearable fluorogenic probe for in vivo β-galactosidase activity detection during aging and senolysis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Shivesh Chaudhary & Sihoon Moon & Hang Lu, 2022. "Fast, efficient, and accurate neuro-imaging denoising via supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Simone Cauzzo & Ester Bruno & David Boulet & Paul Nazac & Miriam Basile & Alejandro Luis Callara & Federico Tozzi & Arti Ahluwalia & Chiara Magliaro & Lydia Danglot & Nicola Vanello, 2024. "A modular framework for multi-scale tissue imaging and neuronal segmentation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Matthias Griebel & Dennis Segebarth & Nikolai Stein & Nina Schukraft & Philip Tovote & Robert Blum & Christoph M. Flath, 2023. "Deep learning-enabled segmentation of ambiguous bioimages with deepflash2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44054-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.