IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32933-6.html
   My bibliography  Save this article

Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst

Author

Listed:
  • Shuoshuo Guo

    (Tianjin University)

  • Yongmeng Wu

    (Tianjin University)

  • Changhong Wang

    (Tianjin University)

  • Ying Gao

    (Tianjin University)

  • Mengyang Li

    (Tianjin University
    Zhengzhou University)

  • Bin Zhang

    (Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Cuibo Liu

    (Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations)

Abstract

Room temperature and selective hydrogenation of quinolines to 1,2,3,4-tetrahydroquinolines using a safe and clean hydrogen donor catalyzed by cost-effective materials is significant yet challenging because of the difficult activation of quinolines and H2. Here, a fluorine-modified cobalt catalyst is synthesized via electroreduction of a Co(OH)F precursor that exhibits high activity for electrocatalytic hydrogenation of quinolines by using H2O as the hydrogen source to produce 1,2,3,4-tetrahydroquinolines with up to 99% selectivity and 94% isolated yield under ambient conditions. Fluorine surface-sites are shown to enhance the adsorption of quinolines and promote water activation to produce active atomic hydrogen (H*) by forming F−-K+(H2O)7 networks. A 1,4/2,3-addition pathway involving H* is proposed through combining experimental and theoretical results. Wide substrate scopes, scalable synthesis of bioactive precursors, facile preparation of deuterated analogues, and the paired synthesis of 1,2,3,4-tetrahydroquinoline and industrially important adiponitrile at a low voltage highlight the promising applications of this methodology.

Suggested Citation

  • Shuoshuo Guo & Yongmeng Wu & Changhong Wang & Ying Gao & Mengyang Li & Bin Zhang & Cuibo Liu, 2022. "Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32933-6
    DOI: 10.1038/s41467-022-32933-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32933-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32933-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cuibo Liu & Zhongxin Chen & Chenliang Su & Xiaoxu Zhao & Qiang Gao & Guo-Hong Ning & Hai Zhu & Wei Tang & Kai Leng & Wei Fu & Bingbing Tian & Xinwen Peng & Jing Li & Qing-Hua Xu & Wu Zhou & Kian Ping , 2018. "Controllable deuteration of halogenated compounds by photocatalytic D2O splitting," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Shi-Kui Geng & Yao Zheng & Shan-Qing Li & Hui Su & Xu Zhao & Jun Hu & Hai-Bo Shu & Mietek Jaroniec & Ping Chen & Qing-Hua Liu & Shi-Zhang Qiao, 2021. "Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst," Nature Energy, Nature, vol. 6(9), pages 904-912, September.
    3. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    4. Zhaofei Zhang & Chuntian Qiu & Yangsen Xu & Qing Han & Junwang Tang & Kian Ping Loh & Chenliang Su, 2020. "Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Li & Yongmeng Wu & Changhong Wang & Meng He & Cuibo Liu & Bin Zhang, 2022. "One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Yuandong Yan & Ruyi Wang & Qian Zheng & Jiaying Zhong & Weichang Hao & Shicheng Yan & Zhigang Zou, 2023. "Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jun Zhou & Zhengyu Zhao & Norio Shibata, 2023. "Transition-metal-free silylboronate-mediated cross-couplings of organic fluorides with amines," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Xintong Gao & Xiaowan Bai & Pengtang Wang & Yan Jiao & Kenneth Davey & Yao Zheng & Shi-Zhang Qiao, 2023. "Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Srivastava, Nitish & Saquib, Mohammad & Rajput, Pramod & Bhosale, Amit C. & Singh, Rhythm & Arora, Pratham, 2023. "Prospects of solar-powered nitrogenous fertilizers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Pengfei Li & Chengcheng Guo & Siyi Wang & Dengke Ma & Tian Feng & Yanwei Wang & Youai Qiu, 2022. "Facile and general electrochemical deuteration of unactivated alkyl halides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Xiubei Yang & Qizheng An & Xuewen Li & Yubin Fu & Shuai Yang & Minghao Liu & Qing Xu & Gaofeng Zeng, 2024. "Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Xin Liu & Yan Jiao & Yao Zheng & Mietek Jaroniec & Shi-Zhang Qiao, 2022. "Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Xian Zhou & Xiaofeng Gao & Mingjie Liu & Zirui Gao & Xuetao Qin & Wenhao Xu & Shitong Ye & Wenhua Zhou & Haoan Fan & Jing Li & Shurui Fan & Lei Yang & Jie Fu & Dequan Xiao & Lili Lin & Ding Ma & Siyu , 2022. "Photocatalytic dehydrogenative C-C coupling of acetonitrile to succinonitrile," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Zhiwei Zhao & Ranran Zhang & Yaowen Liu & Zile Zhu & Qiuyan Wang & Youai Qiu, 2024. "Electrochemical C−H deuteration of pyridine derivatives with D2O," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32933-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.