IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02551-8.html
   My bibliography  Save this article

Controllable deuteration of halogenated compounds by photocatalytic D2O splitting

Author

Listed:
  • Cuibo Liu

    (Shenzhen University
    National University of Singapore)

  • Zhongxin Chen

    (National University of Singapore
    National University of Singapore)

  • Chenliang Su

    (Shenzhen University
    National University of Singapore)

  • Xiaoxu Zhao

    (National University of Singapore
    National University of Singapore)

  • Qiang Gao

    (Shenzhen University
    National University of Singapore)

  • Guo-Hong Ning

    (National University of Singapore)

  • Hai Zhu

    (National University of Singapore)

  • Wei Tang

    (Institute of Materials Research and Engineering)

  • Kai Leng

    (National University of Singapore)

  • Wei Fu

    (National University of Singapore)

  • Bingbing Tian

    (Shenzhen University
    National University of Singapore)

  • Xinwen Peng

    (National University of Singapore)

  • Jing Li

    (Shenzhen University
    National University of Singapore)

  • Qing-Hua Xu

    (Shenzhen University
    National University of Singapore)

  • Wu Zhou

    (University of Chinese Academy of Sciences)

  • Kian Ping Loh

    (Shenzhen University
    National University of Singapore)

Abstract

Deuterium labeling is of great value in organic synthesis and the pharmaceutical industry. However, the state-of-the-art C–H/C–D exchange using noble metal catalysts or strong bases/acids suffers from poor functional group tolerances, poor selectivity and lack of scope for generating molecular complexity. Herein, we demonstrate the deuteration of halides using heavy water as the deuteration reagent and porous CdSe nanosheets as the catalyst. The deuteration mechanism involves the generation of highly active carbon and deuterium radicals via photoinduced electron transfer from CdSe to the substrates, followed by tandem radicals coupling process, which is mechanistically distinct from the traditional methods involving deuterium cations or anions. Our deuteration strategy shows better selectivity and functional group tolerances than current C–H/C–D exchange methods. Extending the synthetic scope, deuterated boronic acids, halides, alkynes, and aldehydes can be used as synthons in Suzuki coupling, Click reaction, C–H bond insertion reaction etc. for the synthesis of complex deuterated molecules.

Suggested Citation

  • Cuibo Liu & Zhongxin Chen & Chenliang Su & Xiaoxu Zhao & Qiang Gao & Guo-Hong Ning & Hai Zhu & Wei Tang & Kai Leng & Wei Fu & Bingbing Tian & Xinwen Peng & Jing Li & Qing-Hua Xu & Wu Zhou & Kian Ping , 2018. "Controllable deuteration of halogenated compounds by photocatalytic D2O splitting," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02551-8
    DOI: 10.1038/s41467-017-02551-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02551-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02551-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Shuoshuo Guo & Yongmeng Wu & Changhong Wang & Ying Gao & Mengyang Li & Bin Zhang & Cuibo Liu, 2022. "Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Zhiwei Zhao & Ranran Zhang & Yaowen Liu & Zile Zhu & Qiuyan Wang & Youai Qiu, 2024. "Electrochemical C−H deuteration of pyridine derivatives with D2O," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Rui Li & Yongmeng Wu & Changhong Wang & Meng He & Cuibo Liu & Bin Zhang, 2022. "One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Pengfei Li & Chengcheng Guo & Siyi Wang & Dengke Ma & Tian Feng & Yanwei Wang & Youai Qiu, 2022. "Facile and general electrochemical deuteration of unactivated alkyl halides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02551-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.