IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32764-5.html
   My bibliography  Save this article

Adipocytes control food intake and weight regain via Vacuolar-type H+ ATPase

Author

Listed:
  • Rizaldy C. Zapata

    (University of California San Diego)

  • Maria Carretero

    (The Scripps Research Institute)

  • Felipe Castellani Gomes Reis

    (University of California San Diego)

  • Besma S. Chaudry

    (University of California San Diego)

  • Jachelle Ofrecio

    (University of California San Diego)

  • Dinghong Zhang

    (University of California San Diego)

  • Roman Sasik

    (University of California San Diego)

  • Theodore Ciaraldi

    (University of California San Diego
    VA San Diego Healthcare System)

  • Michael Petrascheck

    (The Scripps Research Institute)

  • Olivia Osborn

    (University of California San Diego)

Abstract

Energy metabolism becomes dysregulated in individuals with obesity and many of these changes persist after weight loss and likely play a role in weight regain. In these studies, we use a mouse model of diet-induced obesity and weight loss to study the transcriptional memory of obesity. We found that the ‘metabolic memory’ of obesity is predominantly localized in adipocytes. Utilizing a C. elegans-based food intake assay, we identify ‘metabolic memory’ genes that play a role in food intake regulation. We show that expression of ATP6v0a1, a subunit of V-ATPase, is significantly induced in both obese mouse and human adipocytes that persists after weight loss. C. elegans mutants deficient in Atp6v0A1/unc32 eat less than WT controls. Adipocyte-specific Atp6v0a1 knockout mice have reduced food intake and gain less weight in response to HFD. Pharmacological disruption of V-ATPase assembly leads to decreased food intake and less weight re-gain. In summary, using a series of genetic tools from invertebrates to vertebrates, we identify ATP6v0a1 as a regulator of peripheral metabolic memory, providing a potential target for regulation of food intake, weight loss maintenance and the treatment of obesity.

Suggested Citation

  • Rizaldy C. Zapata & Maria Carretero & Felipe Castellani Gomes Reis & Besma S. Chaudry & Jachelle Ofrecio & Dinghong Zhang & Roman Sasik & Theodore Ciaraldi & Michael Petrascheck & Olivia Osborn, 2022. "Adipocytes control food intake and weight regain via Vacuolar-type H+ ATPase," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32764-5
    DOI: 10.1038/s41467-022-32764-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32764-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32764-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christoph A. Thaiss & Shlomik Itav & Daphna Rothschild & Mariska T. Meijer & Maayan Levy & Claudia Moresi & Lenka Dohnalová & Sofia Braverman & Shachar Rozin & Sergey Malitsky & Mally Dori-Bachash & Y, 2016. "Persistent microbiome alterations modulate the rate of post-dieting weight regain," Nature, Nature, vol. 540(7634), pages 544-551, December.
    2. Anabel Perez-Gomez & Maria Carretero & Natalie Weber & Veronika Peterka & Alan To & Viktoriya Titova & Gregory Solis & Olivia Osborn & Michael Petrascheck, 2018. "A phenotypic Caenorhabditis elegans screen identifies a selective suppressor of antipsychotic-induced hyperphagia," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Anthony P. Coll & Michael Chen & Pranali Taskar & Debra Rimmington & Satish Patel & John A. Tadross & Irene Cimino & Ming Yang & Paul Welsh & Samuel Virtue & Deborah A. Goldspink & Emily L. Miedzybrod, 2020. "Publisher Correction: GDF15 mediates the effects of metformin on body weight and energy balance," Nature, Nature, vol. 578(7796), pages 24-24, February.
    4. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    2. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    3. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    4. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    5. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    6. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    7. Van Hanh Nguyen & Catherine Matias, 2014. "On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1167-1194, December.
    8. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    9. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    10. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    11. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
    12. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    13. Mark Rempel, 2016. "Improving Overnight Loan Identification in Payments Systems," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 549-564, March.
    14. Timothy B. Armstrong, 2014. "Adaptive Testing on a Regression Function at a Point," Cowles Foundation Discussion Papers 1957R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2015.
    15. Nucera, Federico & Valente, Giorgio, 2013. "Carry trades and the performance of currency hedge funds," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 407-425.
    16. Nickole Moon & Christopher P. Morgan & Ruth Marx-Rattner & Alyssa Jeng & Rachel L. Johnson & Ijeoma Chikezie & Carmen Mannella & Mary D. Sammel & C. Neill Epperson & Tracy L. Bale, 2024. "Stress increases sperm respiration and motility in mice and men," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.
    18. Roderick C. Slieker & Louise A. Donnelly & Elina Akalestou & Livia Lopez-Noriega & Rana Melhem & Ayşim Güneş & Frederic Abou Azar & Alexander Efanov & Eleni Georgiadou & Hermine Muniangi-Muhitu & Mahs, 2023. "Identification of biomarkers for glycaemic deterioration in type 2 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    20. Iain Melvin & Jason Weston & William Stafford Noble & Christina Leslie, 2011. "Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-8, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32764-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.