IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001047.html
   My bibliography  Save this article

Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding

Author

Listed:
  • Iain Melvin
  • Jason Weston
  • William Stafford Noble
  • Christina Leslie

Abstract

Virtually every molecular biologist has searched a protein or DNA sequence database to find sequences that are evolutionarily related to a given query. Pairwise sequence comparison methods—i.e., measures of similarity between query and target sequences—provide the engine for sequence database search and have been the subject of 30 years of computational research. For the difficult problem of detecting remote evolutionary relationships between protein sequences, the most successful pairwise comparison methods involve building local models (e.g., profile hidden Markov models) of protein sequences. However, recent work in massive data domains like web search and natural language processing demonstrate the advantage of exploiting the global structure of the data space. Motivated by this work, we present a large-scale algorithm called ProtEmbed, which learns an embedding of protein sequences into a low-dimensional “semantic space.” Evolutionarily related proteins are embedded in close proximity, and additional pieces of evidence, such as 3D structural similarity or class labels, can be incorporated into the learning process. We find that ProtEmbed achieves superior accuracy to widely used pairwise sequence methods like PSI-BLAST and HHSearch for remote homology detection; it also outperforms our previous RankProp algorithm, which incorporates global structure in the form of a protein similarity network. Finally, the ProtEmbed embedding space can be visualized, both at the global level and local to a given query, yielding intuition about the structure of protein sequence space. Author Summary: Searching a protein or DNA sequence database to find sequences that are evolutionarily related to a query is one of the foundational problems in computational biology. These database searches rely on pairwise comparisons of sequence similarity between the query and targets, but despite years of method refinements, pairwise comparisons still often fail to detect more distantly related targets. In this study, we adapt recent work from natural language processing to exploit the global structure of the data space in this detection problem. In particular, we borrow the idea of a semantic embedding, where by training on a large text data set, one learns an embedding of words into a low-dimensional semantic space such that words embedded close to each other are likely to be semantically related. We present the ProtEmbed algorithm, which learns an embedding of protein sequences into a semantic space where evolutionarily-related proteins are embedded in close proximity. The flexible training algorithm allows additional pieces of evidence, such as 3D structural information, to be incorporated in the learning process and enables ProtEmbed to achieve state-of-the-art performance for the task of detecting targets that have remote evolutionary relationships to the query.

Suggested Citation

  • Iain Melvin & Jason Weston & William Stafford Noble & Christina Leslie, 2011. "Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-8, January.
  • Handle: RePEc:plo:pcbi00:1001047
    DOI: 10.1371/journal.pcbi.1001047
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001047
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001047&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    2. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    3. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    4. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    5. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
    6. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    7. Timothy B. Armstrong, 2014. "Adaptive Testing on a Regression Function at a Point," Cowles Foundation Discussion Papers 1957R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2015.
    8. Nucera, Federico & Valente, Giorgio, 2013. "Carry trades and the performance of currency hedge funds," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 407-425.
    9. Nickole Moon & Christopher P. Morgan & Ruth Marx-Rattner & Alyssa Jeng & Rachel L. Johnson & Ijeoma Chikezie & Carmen Mannella & Mary D. Sammel & C. Neill Epperson & Tracy L. Bale, 2024. "Stress increases sperm respiration and motility in mice and men," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    11. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    12. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    13. Dvorkin Daniel & Biehs Brian & Kechris Katerina, 2013. "A graphical model method for integrating multiple sources of genome-scale data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 469-487, August.
    14. Robert A. Connolly & Richard J. Rendleman, 2012. "What It Takes to Win on the PGA TOUR (If Your Name Is “Tiger” or If It Isn't)," Interfaces, INFORMS, vol. 42(6), pages 554-576, December.
    15. Yuan Zhao, 2014. "Cross-sector fund performance comparison: the role of real estate mutual funds," ERES eres2014_213, European Real Estate Society (ERES).
    16. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    17. David Ardia & Lukasz Gatarek & Lennart F. hoogerheide, 2014. "A New Bootstrap Test for the Validity of a Set of Marginal Models for Multiple Dependent Time Series: an Application to Risk Analysis," Cahiers de recherche 1413, CIRPEE.
    18. Huang, Rong & Pilbeam, Keith & Pouliot, William, 2021. "Do actively managed US mutual funds produce positive alpha?," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 472-492.
    19. Christopher Walters, 2024. "Empirical Bayes Methods in Labor Economics," RF Berlin - CReAM Discussion Paper Series 2422, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
    20. Ilias Thomas & Alex M. Dickens & Jussi P. Posti & Endre Czeiter & Daniel Duberg & Tim Sinioja & Matilda Kråkström & Isabel R. A. Retel Helmrich & Kevin K. W. Wang & Andrew I. R. Maas & Ewout W. Steyer, 2022. "Serum metabolome associated with severity of acute traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.