IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7710d10.1038_s41586-018-0216-x.html
   My bibliography  Save this article

Gate-tunable frequency combs in graphene–nitride microresonators

Author

Listed:
  • Baicheng Yao

    (University of California
    University of Electronic Science and Technology of China
    University of Cambridge)

  • Shu-Wei Huang

    (University of California
    University of Colorado Boulder)

  • Yuan Liu

    (University of California
    Hunan University)

  • Abhinav Kumar Vinod

    (University of California)

  • Chanyeol Choi

    (University of California)

  • Michael Hoff

    (University of California)

  • Yongnan Li

    (University of California)

  • Mingbin Yu

    (Institute of Microelectronics
    Shanghai Institute of Microsystem and Information Technology, and Shanghai Industrial Technology Research Institute)

  • Ziying Feng

    (University of California)

  • Dim-Lee Kwong

    (Institute of Microelectronics
    Institute for Infocomm Research)

  • Yu Huang

    (University of California)

  • Yunjiang Rao

    (University of Electronic Science and Technology of China)

  • Xiangfeng Duan

    (University of California)

  • Chee Wei Wong

    (University of California)

Abstract

Optical frequency combs, which emit pulses of light at discrete, equally spaced frequencies, are cornerstones of modern-day frequency metrology, precision spectroscopy, astronomical observations, ultrafast optics and quantum information1–7. Chip-scale frequency combs, based on the Kerr and Raman nonlinearities in monolithic microresonators with ultrahigh quality factors8–10, have recently led to progress in optical clockwork and observations of temporal cavity solitons11–14. But the chromatic dispersion within a laser cavity, which determines the comb formation15,16, is usually difficult to tune with an electric field, whether in microcavities or fibre cavities. Such electrically dynamic control could bridge optical frequency combs and optoelectronics, enabling diverse comb outputs in one resonator with fast and convenient tunability. Arising from its exceptional Fermi–Dirac tunability and ultrafast carrier mobility17–19, graphene has a complex optical dispersion determined by its optical conductivity, which can be tuned through a gate voltage20,21. This has brought about optoelectronic advances such as modulators22,23, photodetectors 24 and controllable plasmonics25,26. Here we demonstrate the gated intracavity tunability of graphene-based optical frequency combs, by coupling the gate-tunable optical conductivity to a silicon nitride photonic microresonator, thus modulating its second- and higher-order chromatic dispersions by altering the Fermi level. Preserving cavity quality factors up to 106 in the graphene-based comb, we implement a dual-layer ion-gel-gated transistor to tune the Fermi level of graphene across the range 0.45–0.65 electronvolts, under single-volt-level control. We use this to produce charge-tunable primary comb lines from 2.3 terahertz to 7.2 terahertz, coherent Kerr frequency combs, controllable Cherenkov radiation and controllable soliton states, all in a single microcavity. We further demonstrate voltage-tunable transitions from periodic soliton crystals to crystals with defects, mapped by our ultrafast second-harmonic optical autocorrelation. This heterogeneous graphene microcavity, which combines single-atomic-layer nanoscience and ultrafast optoelectronics, will help to improve our understanding of dynamical frequency combs and ultrafast optics.

Suggested Citation

  • Baicheng Yao & Shu-Wei Huang & Yuan Liu & Abhinav Kumar Vinod & Chanyeol Choi & Michael Hoff & Yongnan Li & Mingbin Yu & Ziying Feng & Dim-Lee Kwong & Yu Huang & Yunjiang Rao & Xiangfeng Duan & Chee W, 2018. "Gate-tunable frequency combs in graphene–nitride microresonators," Nature, Nature, vol. 558(7710), pages 410-414, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7710:d:10.1038_s41586-018-0216-x
    DOI: 10.1038/s41586-018-0216-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0216-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0216-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7710:d:10.1038_s41586-018-0216-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.