IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32595-4.html
   My bibliography  Save this article

Population-based tract-to-region connectome of the human brain and its hierarchical topology

Author

Listed:
  • Fang-Cheng Yeh

    (University of Pittsburgh
    University of Pittsburgh)

Abstract

Connectome maps region-to-region connectivities but does not inform which white matter pathways form the connections. Here we constructed a population-based tract-to-region connectome to fill this information gap. The constructed connectome quantifies the population probability of a white matter tract innervating a cortical region. The results show that ~85% of the tract-to-region connectome entries are consistent across individuals, whereas the remaining (~15%) have substantial individual differences requiring individualized mapping. Further hierarchical clustering on cortical regions revealed dorsal, ventral, and limbic networks based on the tract-to-region connective patterns. The clustering results on white matter bundles revealed the categorization of fiber bundle systems in the association pathways. This tract-to-region connectome provides insights into the connective topology between cortical regions and white matter bundles. The derived hierarchical relation further offers a categorization of gray and white matter structures.

Suggested Citation

  • Fang-Cheng Yeh, 2022. "Population-based tract-to-region connectome of the human brain and its hierarchical topology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32595-4
    DOI: 10.1038/s41467-022-32595-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32595-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32595-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michel Thiebaut de Schotten & Chris Foulon & Parashkev Nachev, 2020. "Brain disconnections link structural connectivity with function and behaviour," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Klaus H. Maier-Hein & Peter F. Neher & Jean-Christophe Houde & Marc-Alexandre Côté & Eleftherios Garyfallidis & Jidan Zhong & Maxime Chamberland & Fang-Cheng Yeh & Ying-Chia Lin & Qing Ji & Wilburn E., 2017. "The challenge of mapping the human connectome based on diffusion tractography," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evan Collins & Omar Chishti & Sami Obaid & Hari McGrath & Alex King & Xilin Shen & Jagriti Arora & Xenophon Papademetris & R. Todd Constable & Dennis D. Spencer & Hitten P. Zaveri, 2024. "Mapping the structure-function relationship along macroscale gradients in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    2. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Rodrigo P. Rocha & Loren Koçillari & Samir Suweis & Michele Filippo De Grazia & Michel Thiebaut Schotten & Marco Zorzi & Maurizio Corbetta, 2022. "Recovery of neural dynamics criticality in personalized whole-brain models of stroke," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Xinyuan Liang & Lianglong Sun & Xuhong Liao & Tianyuan Lei & Mingrui Xia & Dingna Duan & Zilong Zeng & Qiongling Li & Zhilei Xu & Weiwei Men & Yanpei Wang & Shuping Tan & Jia-Hong Gao & Shaozheng Qin , 2024. "Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Justine Y. Hansen & Golia Shafiei & Jacob W. Vogel & Kelly Smart & Carrie E. Bearden & Martine Hoogman & Barbara Franke & Daan Rooij & Jan Buitelaar & Carrie R. McDonald & Sanjay M. Sisodiya & Lianne , 2022. "Local molecular and global connectomic contributions to cross-disorder cortical abnormalities," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Michael Wainberg & Natalie J. Forde & Salim Mansour & Isabel Kerrebijn & Sarah E. Medland & Colin Hawco & Shreejoy J. Tripathy, 2024. "Genetic architecture of the structural connectome," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32595-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.