IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01285-x.html
   My bibliography  Save this article

The challenge of mapping the human connectome based on diffusion tractography

Author

Listed:
  • Klaus H. Maier-Hein

    (German Cancer Research Center (DKFZ))

  • Peter F. Neher

    (German Cancer Research Center (DKFZ))

  • Jean-Christophe Houde

    (Université de Sherbrooke)

  • Marc-Alexandre Côté

    (Université de Sherbrooke)

  • Eleftherios Garyfallidis

    (Université de Sherbrooke
    Indiana University)

  • Jidan Zhong

    (University Health Network)

  • Maxime Chamberland

    (Université de Sherbrooke)

  • Fang-Cheng Yeh

    (University of Pittsburgh School of Medicine)

  • Ying-Chia Lin

    (IMT—Institute for Advanced Studies)

  • Qing Ji

    (St. Jude Children’s Research Hospital)

  • Wilburn E. Reddick

    (St. Jude Children’s Research Hospital)

  • John O. Glass

    (St. Jude Children’s Research Hospital)

  • David Qixiang Chen

    (University of Toronto Institute of Medical Science)

  • Yuanjing Feng

    (Zhejiang University of Technology)

  • Chengfeng Gao

    (Zhejiang University of Technology)

  • Ye Wu

    (Zhejiang University of Technology)

  • Jieyan Ma

    (United Imaging Healthcare Co.)

  • Renjie He

    (United Imaging Healthcare Co.)

  • Qiang Li

    (United Imaging Healthcare Co.
    Shanghai Advanced Research Institute)

  • Carl-Fredrik Westin

    (Harvard Medical School)

  • Samuel Deslauriers-Gauthier

    (Université de Sherbrooke)

  • J. Omar Ocegueda González

    (Center for Research in Mathematics)

  • Michael Paquette

    (Université de Sherbrooke)

  • Samuel St-Jean

    (Université de Sherbrooke)

  • Gabriel Girard

    (Université de Sherbrooke)

  • François Rheault

    (Université de Sherbrooke)

  • Jasmeen Sidhu

    (Université de Sherbrooke)

  • Chantal M. W. Tax

    (University Medical Center Utrecht
    School of Psychology, Cardiff University)

  • Fenghua Guo

    (University Medical Center Utrecht)

  • Hamed Y. Mesri

    (University Medical Center Utrecht)

  • Szabolcs Dávid

    (University Medical Center Utrecht)

  • Martijn Froeling

    (University Medical Center Utrecht)

  • Anneriet M. Heemskerk

    (University Medical Center Utrecht)

  • Alexander Leemans

    (University Medical Center Utrecht)

  • Arnaud Boré

    (Université de Montréal)

  • Basile Pinsard

    (Université de Montréal
    Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB))

  • Christophe Bedetti

    (Université de Montréal
    Hôpital du Sacré-Coeur de Montréal)

  • Matthieu Desrosiers

    (Université de Montréal)

  • Simona Brambati

    (Université de Montréal)

  • Julien Doyon

    (Université de Montréal)

  • Alessia Sarica

    (Policlinico Magna Graecia)

  • Roberta Vasta

    (Policlinico Magna Graecia)

  • Antonio Cerasa

    (Policlinico Magna Graecia)

  • Aldo Quattrone

    (Policlinico Magna Graecia
    University Magna Graecia)

  • Jason Yeatman

    (University of Washington)

  • Ali R. Khan

    (Western University)

  • Wes Hodges

    (Synaptive Medical Inc.)

  • Simon Alexander

    (Synaptive Medical Inc.)

  • David Romascano

    (Ecole Polytechnique Federale de Lausanne)

  • Muhamed Barakovic

    (Ecole Polytechnique Federale de Lausanne)

  • Anna Auría

    (Ecole Polytechnique Federale de Lausanne)

  • Oscar Esteban

    (ETSI Telecom., U. Politécnica de Madrid and CIBER-BBN)

  • Alia Lemkaddem

    (Ecole Polytechnique Federale de Lausanne)

  • Jean-Philippe Thiran

    (Ecole Polytechnique Federale de Lausanne
    University Hospital Center (CHUV) and University of Lausanne (UNIL))

  • H. Ertan Cetingul

    (Siemens Healthcare)

  • Benjamin L. Odry

    (Siemens Healthcare)

  • Boris Mailhe

    (Siemens Healthcare)

  • Mariappan S. Nadar

    (Siemens Healthcare)

  • Fabrizio Pizzagalli

    (Keck School of Medicine of USC)

  • Gautam Prasad

    (Keck School of Medicine of USC)

  • Julio E. Villalon-Reina

    (Keck School of Medicine of USC)

  • Justin Galvis

    (Keck School of Medicine of USC)

  • Paul M. Thompson

    (Keck School of Medicine of USC)

  • Francisco De Santiago Requejo

    (King’s College London)

  • Pedro Luque Laguna

    (King’s College London)

  • Luis Miguel Lacerda

    (King’s College London)

  • Rachel Barrett

    (King’s College London)

  • Flavio Dell’Acqua

    (King’s College London)

  • Marco Catani

    (King’s College London)

  • Laurent Petit

    (UMR5293 CNRS, CEA, University of Bordeaux)

  • Emmanuel Caruyer

    (Institute for Research in IT and Random Systems (IRISA))

  • Alessandro Daducci

    (Ecole Polytechnique Federale de Lausanne
    University Hospital Center (CHUV) and University of Lausanne (UNIL))

  • Tim B. Dyrby

    (Copenhagen University Hospital Hvidovre
    Technical University of Denmark)

  • Tim Holland-Letz

    (German Cancer Research Center (DKFZ))

  • Claus C. Hilgetag

    (University Medical Center Eppendorf)

  • Bram Stieltjes

    (University Hospital Basel, Radiology & Nuclear Medicine Clinic)

  • Maxime Descoteaux

    (Université de Sherbrooke)

Abstract

Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.

Suggested Citation

  • Klaus H. Maier-Hein & Peter F. Neher & Jean-Christophe Houde & Marc-Alexandre Côté & Eleftherios Garyfallidis & Jidan Zhong & Maxime Chamberland & Fang-Cheng Yeh & Ying-Chia Lin & Qing Ji & Wilburn E., 2017. "The challenge of mapping the human connectome based on diffusion tractography," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01285-x
    DOI: 10.1038/s41467-017-01285-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01285-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01285-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justine Y. Hansen & Golia Shafiei & Jacob W. Vogel & Kelly Smart & Carrie E. Bearden & Martine Hoogman & Barbara Franke & Daan Rooij & Jan Buitelaar & Carrie R. McDonald & Sanjay M. Sisodiya & Lianne , 2022. "Local molecular and global connectomic contributions to cross-disorder cortical abnormalities," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    3. Xinyuan Liang & Lianglong Sun & Xuhong Liao & Tianyuan Lei & Mingrui Xia & Dingna Duan & Zilong Zeng & Qiongling Li & Zhilei Xu & Weiwei Men & Yanpei Wang & Shuping Tan & Jia-Hong Gao & Shaozheng Qin , 2024. "Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Fang-Cheng Yeh, 2022. "Population-based tract-to-region connectome of the human brain and its hierarchical topology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Michael Wainberg & Natalie J. Forde & Salim Mansour & Isabel Kerrebijn & Sarah E. Medland & Colin Hawco & Shreejoy J. Tripathy, 2024. "Genetic architecture of the structural connectome," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01285-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.