IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32497-5.html
   My bibliography  Save this article

A distributed nanocluster based multi-agent evolutionary network

Author

Listed:
  • Liying Xu

    (Peking University)

  • Jiadi Zhu

    (Peking University)

  • Bing Chen

    (Zhejiang University)

  • Zhen Yang

    (Peking University)

  • Keqin Liu

    (Peking University)

  • Bingjie Dang

    (Peking University)

  • Teng Zhang

    (Peking University)

  • Yuchao Yang

    (Peking University
    Peking University
    Chinese Institute for Brain Research (CIBR), Beijing
    Beijing Academy of Artificial Intelligence)

  • Ru Huang

    (Peking University
    Peking University
    Chinese Institute for Brain Research (CIBR), Beijing)

Abstract

As an important approach of distributed artificial intelligence, multi-agent system provides an efficient way to solve large-scale computational problems through high-parallelism processing with nonlinear interactions between the agents. However, the huge capacity and complex distribution of the individual agents make it difficult for efficient hardware construction. Here, we propose and demonstrate a multi-agent hardware system that deploys distributed Ag nanoclusters as physical agents and their electrochemical dissolution, growth and evolution dynamics under electric field for high-parallelism exploration of the solution space. The collaboration and competition between the Ag nanoclusters allow information to be effectively expressed and processed, which therefore replaces cumbrous exhaustive operations with self-organization of Ag physical network based on the positive feedback of information interaction, leading to significantly reduced computational complexity. The proposed multi-agent network can be scaled up with parallel and serial integration structures, and demonstrates efficient solution of graph and optimization problems. An artificial potential field with superimposed attractive/repulsive components and varied ion velocity is realized, showing gradient descent route planning with self-adaptive obstacle avoidance. This multi-agent network is expected to serve as a physics-empowered parallel computing hardware.

Suggested Citation

  • Liying Xu & Jiadi Zhu & Bing Chen & Zhen Yang & Keqin Liu & Bingjie Dang & Teng Zhang & Yuchao Yang & Ru Huang, 2022. "A distributed nanocluster based multi-agent evolutionary network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32497-5
    DOI: 10.1038/s41467-022-32497-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32497-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32497-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oriol Vinyals & Igor Babuschkin & Wojciech M. Czarnecki & Michaël Mathieu & Andrew Dudzik & Junyoung Chung & David H. Choi & Richard Powell & Timo Ewalds & Petko Georgiev & Junhyuk Oh & Dan Horgan & M, 2019. "Grandmaster level in StarCraft II using multi-agent reinforcement learning," Nature, Nature, vol. 575(7782), pages 350-354, November.
    2. Tao Chen & Jeroen van Gelder & Bram van de Ven & Sergey V. Amitonov & Bram de Wilde & Hans-Christian Ruiz Euler & Hajo Broersma & Peter A. Bobbert & Floris A. Zwanenburg & Wilfred G. van der Wiel, 2020. "Classification with a disordered dopant-atom network in silicon," Nature, Nature, vol. 577(7790), pages 341-345, January.
    3. Hugh G. Manning & Fabio Niosi & Claudia Gomes Rocha & Allen T. Bellew & Colin O’Callaghan & Subhajit Biswas & Patrick F. Flowers & Benjamin J. Wiley & Justin D. Holmes & Mauro S. Ferreira & John J. Bo, 2018. "Emergence of winner-takes-all connectivity paths in random nanowire networks," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. C. Zu & F. Machado & B. Ye & S. Choi & B. Kobrin & T. Mittiga & S. Hsieh & P. Bhattacharyya & M. Markham & D. Twitchen & A. Jarmola & D. Budker & C. R. Laumann & J. E. Moore & N. Y. Yao, 2021. "Emergent hydrodynamics in a strongly interacting dipolar spin ensemble," Nature, Nature, vol. 597(7874), pages 45-50, September.
    5. Sreetosh Goswami & Rajib Pramanick & Abhijeet Patra & Santi Prasad Rath & Martin Foltin & A. Ariando & Damien Thompson & T. Venkatesan & Sreebrata Goswami & R. Stanley Williams, 2021. "Decision trees within a molecular memristor," Nature, Nature, vol. 597(7874), pages 51-56, September.
    6. Yuchao Yang & Peng Gao & Linze Li & Xiaoqing Pan & Stefan Tappertzhofen & ShinHyun Choi & Rainer Waser & Ilia Valov & Wei D. Lu, 2014. "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    7. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    8. E. Bonabeau & M. Dorigo & G. Theraulaz, 2000. "Inspiration for optimization from social insect behaviour," Nature, Nature, vol. 406(6791), pages 39-42, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konlechner, Roland & Allagui, Anis & Antonov, Vladimir N. & Yudin, Dmitry, 2023. "A superstatistics approach to the modelling of memristor current–voltage responses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    2. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jaehyun Kang & Taeyoon Kim & Suman Hu & Jaewook Kim & Joon Young Kwak & Jongkil Park & Jong Keuk Park & Inho Kim & Suyoun Lee & Sangbum Kim & YeonJoo Jeong, 2022. "Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. S. S. Teja Nibhanupudi & Anupam Roy & Dmitry Veksler & Matthew Coupin & Kevin C. Matthews & Matthew Disiena & Ansh & Jatin V. Singh & Ioana R. Gearba-Dolocan & Jamie Warner & Jaydeep P. Kulkarni & Gen, 2024. "Ultra-fast switching memristors based on two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    10. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    11. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    12. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    13. Chen, Qun & Li, Bo & Yin, Wei & Jiang, Xiaowei & Chen, Xiangyong, 2023. "Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    14. Stavrinides, Stavros G. & Hanias, Michael P. & Gonzalez, Mireia B. & Campabadal, Francesca & Contoyiannis, Yiannis & Potirakis, Stelios M. & Al Chawa, Mohamad Moner & de Benito, Carol & Tetzlaff, Rona, 2022. "On the chaotic nature of random telegraph noise in unipolar RRAM memristor devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    16. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Sakthivel, R. & Anbuvithya, R. & Mathiyalagan, K. & Ma, Yong-Ki & Prakash, P., 2016. "Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 213-228.
    18. Daphne Cornelisse & Thomas Rood & Mateusz Malinowski & Yoram Bachrach & Tal Kachman, 2022. "Neural Payoff Machines: Predicting Fair and Stable Payoff Allocations Among Team Members," Papers 2208.08798, arXiv.org.
    19. Ying Zhang & Ge-Qi Mao & Xiaolong Zhao & Yu Li & Meiyun Zhang & Zuheng Wu & Wei Wu & Huajun Sun & Yizhong Guo & Lihua Wang & Xumeng Zhang & Qi Liu & Hangbing Lv & Kan-Hao Xue & Guangwei Xu & Xiangshui, 2021. "Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32497-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.