IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v577y2020i7790d10.1038_s41586-019-1901-0.html
   My bibliography  Save this article

Classification with a disordered dopant-atom network in silicon

Author

Listed:
  • Tao Chen

    (University of Twente)

  • Jeroen van Gelder

    (University of Twente)

  • Bram van de Ven

    (University of Twente)

  • Sergey V. Amitonov

    (University of Twente)

  • Bram de Wilde

    (University of Twente)

  • Hans-Christian Ruiz Euler

    (University of Twente)

  • Hajo Broersma

    (University of Twente)

  • Peter A. Bobbert

    (University of Twente
    Eindhoven University of Technology)

  • Floris A. Zwanenburg

    (University of Twente)

  • Wilfred G. van der Wiel

    (University of Twente)

Abstract

Classification is an important task at which both biological and artificial neural networks excel1,2. In machine learning, nonlinear projection into a high-dimensional feature space can make data linearly separable3,4, simplifying the classification of complex features. Such nonlinear projections are computationally expensive in conventional computers. A promising approach is to exploit physical materials systems that perform this nonlinear projection intrinsically, because of their high computational density5, inherent parallelism and energy efficiency6,7. However, existing approaches either rely on the systems’ time dynamics, which requires sequential data processing and therefore hinders parallel computation5,6,8, or employ large materials systems that are difficult to scale up7. Here we use a parallel, nanoscale approach inspired by filters in the brain1 and artificial neural networks2 to perform nonlinear classification and feature extraction. We exploit the nonlinearity of hopping conduction9–11 through an electrically tunable network of boron dopant atoms in silicon, reconfiguring the network through artificial evolution to realize different computational functions. We first solve the canonical two-input binary classification problem, realizing all Boolean logic gates12 up to room temperature, demonstrating nonlinear classification with the nanomaterial system. We then evolve our dopant network to realize feature filters2 that can perform four-input binary classification on the Modified National Institute of Standards and Technology handwritten digit database. Implementation of our material-based filters substantially improves the classification accuracy over that of a linear classifier directly applied to the original data13. Our results establish a paradigm of silicon-based electronics for small-footprint and energy-efficient computation14.

Suggested Citation

  • Tao Chen & Jeroen van Gelder & Bram van de Ven & Sergey V. Amitonov & Bram de Wilde & Hans-Christian Ruiz Euler & Hajo Broersma & Peter A. Bobbert & Floris A. Zwanenburg & Wilfred G. van der Wiel, 2020. "Classification with a disordered dopant-atom network in silicon," Nature, Nature, vol. 577(7790), pages 341-345, January.
  • Handle: RePEc:nat:nature:v:577:y:2020:i:7790:d:10.1038_s41586-019-1901-0
    DOI: 10.1038/s41586-019-1901-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1901-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1901-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Liying Xu & Jiadi Zhu & Bing Chen & Zhen Yang & Keqin Liu & Bingjie Dang & Teng Zhang & Yuchao Yang & Ru Huang, 2022. "A distributed nanocluster based multi-agent evolutionary network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Herbert Jaeger & Beatriz Noheda & Wilfred G. Wiel, 2023. "Toward a formal theory for computing machines made out of whatever physics offers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Dmitrii V. Kriukov & Jurriaan Huskens & Albert S. Y. Wong, 2024. "Exploring the programmability of autocatalytic chemical reaction networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:577:y:2020:i:7790:d:10.1038_s41586-019-1901-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.