Cholesky-based multivariate Gaussian regression
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecosta.2022.03.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Groll, Andreas & Hambuckers, Julien & Kneib, Thomas & Umlauf, Nikolaus, 2019.
"LASSO-type penalization in the framework of generalized additive models for location, scale and shape,"
Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 59-73.
- Andreas Groll & Julien Hambuckers & Thomas Kneib & Nikolaus Umlauf, 2018. "LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape," Working Papers 2018-16, Faculty of Economics and Statistics, Universität Innsbruck.
- Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
- Thomas Kneib & Ludwig Fahrmeir, 2007. "A Mixed Model Approach for Geoadditive Hazard Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 207-228, March.
- Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
- Nadja Klein & Thomas Kneib & Stephan Klasen & Stefan Lang, 2015.
"Bayesian structured additive distributional regression for multivariate responses,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(4), pages 569-591, August.
- Nadja Klein & Thomas Kneib & Stephan Klasen & Stefan Lang, 2013. "Bayesian Structured Additive Distributional Regression for Multivariate Responses," Working Papers 2013-35, Faculty of Economics and Statistics, Universität Innsbruck.
- Kevin Burke & M. C. Jones & Angela Noufaily, 2020. "A flexible parametric modelling framework for survival analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(2), pages 429-457, April.
- Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
- Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
- R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
- Thomas Kneib & Nikolaus Umlauf, 2017. "A Primer on Bayesian Distributional Regression," Working Papers 2017-13, Faculty of Economics and Statistics, Universität Innsbruck.
- Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
- Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Matteo Malavasi & Gareth W. Peters & Stefan Treuck & Pavel V. Shevchenko & Jiwook Jang & Georgy Sofronov, 2024. "Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications," Papers 2410.05297, arXiv.org.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
- Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
- Nikolaus Umlauf & Nadja Klein & Achim Zeileis, 2017. "BAMLSS: Bayesian Additive Models for Location, Scale and Shape (and Beyond)," Working Papers 2017-05, Faculty of Economics and Statistics, Universität Innsbruck.
- Benjamin Avanzi & Eric Dong & Patrick J. Laub & Bernard Wong, 2024. "Distributional Refinement Network: Distributional Forecasting via Deep Learning," Papers 2406.00998, arXiv.org.
- Paul F. V. Wiemann & Thomas Kneib & Julien Hambuckers, 2024. "Using the softplus function to construct alternative link functions in generalized linear models and beyond," Statistical Papers, Springer, vol. 65(5), pages 3155-3180, July.
- Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
- Yang, Dazhi & Yang, Guoming & Liu, Bai, 2023. "Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction," Renewable Energy, Elsevier, vol. 215(C).
- Lisa Schlosser & Torsten Hothorn & Reto Stauffer & Achim Zeileis, 2018. "Distributional regression forests for probabilistic precipitation forecasting in complex terrain," Working Papers 2018-08, Faculty of Economics and Statistics, Universität Innsbruck, revised Nov 2018.
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
- Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
- Michael K. Adjemian & Valentina G. Bruno & Michel A. Robe, 2020. "Incorporating Uncertainty into USDA Commodity Price Forecasts," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 696-712, March.
- Alexander Silbersdorff & Kai Sebastian Schneider, 2019. "Distributional Regression Techniques in Socioeconomic Research on the Inequality of Health with an Application on the Relationship between Mental Health and Income," IJERPH, MDPI, vol. 16(20), pages 1-28, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:29:y:2024:i:c:p:261-281. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.