IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19121-0.html
   My bibliography  Save this article

Broadband multi-magnon relaxometry using a quantum spin sensor for high frequency ferromagnetic dynamics sensing

Author

Listed:
  • Brendan A. McCullian

    (The Ohio State University)

  • Ahmed M. Thabt

    (The Ohio State University)

  • Benjamin A. Gray

    (Materials and Manufacturing Directorate, Air Force Research Laboratory)

  • Alex L. Melendez

    (The Ohio State University)

  • Michael S. Wolf

    (Materials and Manufacturing Directorate, Air Force Research Laboratory)

  • Vladimir L. Safonov

    (Materials and Manufacturing Directorate, Air Force Research Laboratory)

  • Denis V. Pelekhov

    (The Ohio State University)

  • Vidya P. Bhallamudi

    (Indian Institute of Technology)

  • Michael R. Page

    (Materials and Manufacturing Directorate, Air Force Research Laboratory)

  • P. Chris Hammel

    (The Ohio State University)

Abstract

Development of sensitive local probes of magnon dynamics is essential to further understand the physical processes that govern magnon generation, propagation, scattering, and relaxation. Quantum spin sensors like the NV center in diamond have long spin lifetimes and their relaxation can be used to sense magnetic field noise at gigahertz frequencies. Thus far, NV sensing of ferromagnetic dynamics has been constrained to the case where the NV spin is resonant with a magnon mode in the sample meaning that the NV frequency provides an upper bound to detection. In this work we demonstrate ensemble NV detection of spinwaves generated via a nonlinear instability process where spinwaves of nonzero wavevector are parametrically driven by a high amplitude microwave field. NV relaxation caused by these driven spinwaves can be divided into two regimes; one- and multi-magnon NV relaxometry. In the one-magnon NV relaxometry regime the driven spinwave frequency is below the NV frequencies. The driven spinwave undergoes four-magnon scattering resulting in an increase in the population of magnons which are frequency matched to the NVs. The dipole magnetic fields of the NV-resonant magnons couple to and relax nearby NV spins. The amplitude of the NV relaxation increases with the wavevector of the driven spinwave mode which we are able to vary up to 3 × 106 m−1, well into the part of the spinwave spectrum dominated by the exchange interaction. Increasing the strength of the applied magnetic field brings all spinwave modes to higher frequencies than the NV frequencies. We find that the NVs are relaxed by the driven spinwave instability despite the absence of any individual NV-resonant magnons, suggesting that multiple magnons participate in creating magnetic field noise below the ferromagnetic gap frequency which causes NV spin relaxation.

Suggested Citation

  • Brendan A. McCullian & Ahmed M. Thabt & Benjamin A. Gray & Alex L. Melendez & Michael S. Wolf & Vladimir L. Safonov & Denis V. Pelekhov & Vidya P. Bhallamudi & Michael R. Page & P. Chris Hammel, 2020. "Broadband multi-magnon relaxometry using a quantum spin sensor for high frequency ferromagnetic dynamics sensing," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19121-0
    DOI: 10.1038/s41467-020-19121-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19121-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19121-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rouven Dreyer & Alexander F. Schäffer & Hans G. Bauer & Niklas Liebing & Jamal Berakdar & Georg Woltersdorf, 2022. "Imaging and phase-locking of non-linear spin waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Alexander Savvin & Alexander Dormidonov & Evgeniya Smetanina & Vladimir Mitrokhin & Evgeniy Lipatov & Dmitriy Genin & Sergey Potanin & Alexander Yelisseyev & Viktor Vins, 2021. "NV– diamond laser," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Senlei Li & Zeliang Sun & Nathan J. McLaughlin & Afsana Sharmin & Nishkarsh Agarwal & Mengqi Huang & Suk Hyun Sung & Hanyi Lu & Shaohua Yan & Hechang Lei & Robert Hovden & Hailong Wang & Hua Chen & Li, 2024. "Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19121-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.