IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32159-6.html
   My bibliography  Save this article

Structure-guided and phage-assisted evolution of a therapeutic anti-EGFR antibody to reverse acquired resistance

Author

Listed:
  • Xinlei Zhuang

    (Zhejiang University)

  • Zhe Wang

    (Zhejiang University)

  • Jiansheng Fan

    (Zhejiang University)

  • Xuefei Bai

    (Zhejiang University)

  • Yingchun Xu

    (Zhejiang University)

  • James J. Chou

    (Harvard Medical School)

  • Tingjun Hou

    (Zhejiang University)

  • Shuqing Chen

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Liqiang Pan

    (Zhejiang University
    Zhejiang University School of Medicine
    Key Laboratory of Pancreatic Disease of Zhejiang Province)

Abstract

Acquired resistance to cetuximab in colorectal cancers is partially mediated by the acquisition of mutations located in the cetuximab epitope in the epidermal growth factor receptor (EGFR) ectodomain and hinders the clinical application of cetuximab. We develop a structure-guided and phage-assisted evolution approach for cetuximab evolution to reverse EGFRS492R- or EGFRG465R-driven resistance without altering the binding epitope or undermining antibody efficacy. Two evolved cetuximab variants, Ctx-VY and Ctx-Y104D, exhibit a restored binding ability with EGFRS492R, which harbors the most common resistance substitution, S492R. Ctx-W52D exhibits restored binding with EGFR harboring another common cetuximab resistance substitution, G465R (EGFRG465R). All the evolved cetuximab variants effectively inhibit EGFR activation and downstream signaling and induce the internalization and degradation of EGFRS492R and EGFRG465R as well as EGFRWT. The evolved cetuximab variants (Ctx-VY, Ctx-Y104D and Ctx-W52D) with one or two amino acid substitutions in the complementarity-determining region inherit the optimized physical and chemical properties of cetuximab to a great extent, thus ensuring their druggability. Our data collectively show that structure-guided and phage-assisted evolution is an efficient and general approach for reversing receptor mutation-mediated resistance to therapeutic antibody drugs.

Suggested Citation

  • Xinlei Zhuang & Zhe Wang & Jiansheng Fan & Xuefei Bai & Yingchun Xu & James J. Chou & Tingjun Hou & Shuqing Chen & Liqiang Pan, 2022. "Structure-guided and phage-assisted evolution of a therapeutic anti-EGFR antibody to reverse acquired resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32159-6
    DOI: 10.1038/s41467-022-32159-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32159-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32159-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beth O. Van Emburgh & Sabrina Arena & Giulia Siravegna & Luca Lazzari & Giovanni Crisafulli & Giorgio Corti & Benedetta Mussolin & Federica Baldi & Michela Buscarino & Alice Bartolini & Emanuele Valto, 2016. "Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    2. Sarel J Fleishman & Andrew Leaver-Fay & Jacob E Corn & Eva-Maria Strauch & Sagar D Khare & Nobuyasu Koga & Justin Ashworth & Paul Murphy & Florian Richter & Gordon Lemmon & Jens Meiler & David Baker, 2011. "RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Ellis & Julia Lederhofer & Oliver J. Acton & Yaroslav Tsybovsky & Sally Kephart & Christina Yap & Rebecca A. Gillespie & Adrian Creanga & Audrey Olshefsky & Tyler Stephens & Deleah Pettie & Mic, 2022. "Structure-based design of stabilized recombinant influenza neuraminidase tetramers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    4. Jonathan Yaacov Weinstein & Carlos Martí-Gómez & Rosalie Lipsh-Sokolik & Shlomo Yakir Hoch & Demian Liebermann & Reinat Nevo & Haim Weissman & Ekaterina Petrovich-Kopitman & David Margulies & Dmitry I, 2023. "Designed active-site library reveals thousands of functional GFP variants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jared Adolf-Bryfogle & Oleks Kalyuzhniy & Michael Kubitz & Brian D Weitzner & Xiaozhen Hu & Yumiko Adachi & William R Schief & Roland L Dunbrack Jr., 2018. "RosettaAntibodyDesign (RAbD): A general framework for computational antibody design," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-38, April.
    6. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. P. Konstantin Richter & Paula Blázquez-Sánchez & Ziyue Zhao & Felipe Engelberger & Christian Wiebeler & Georg Künze & Ronny Frank & Dana Krinke & Emanuele Frezzotti & Yuliia Lihanova & Patricia Falken, 2023. "Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Jorge Roel-Touris & Marta Nadal & Enrique Marcos, 2023. "Single-chain dimers from de novo immunoglobulins as robust scaffolds for multiple binding loops," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Diego del Alamo & Kevin L Jagessar & Jens Meiler & Hassane S Mchaourab, 2021. "Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER Distance Restraints," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-18, June.
    10. Radia M. Johnson & Xueping Qu & Chu-Fang Lin & Ling-Yuh Huw & Avinashnarayan Venkatanarayan & Ethan Sokol & Fang-Shu Ou & Nnamdi Ihuegbu & Oliver A. Zill & Omar Kabbarah & Lisa Wang & Richard Bourgon , 2022. "ARID1A mutations confer intrinsic and acquired resistance to cetuximab treatment in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Julia Skokowa & Birte Hernandez Alvarez & Murray Coles & Malte Ritter & Masoud Nasri & Jérémy Haaf & Narges Aghaallaei & Yun Xu & Perihan Mir & Ann-Christin Krahl & Katherine W. Rogers & Kateryna Maks, 2022. "A topological refactoring design strategy yields highly stable granulopoietic proteins," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Tamuka M. Chidyausiku & Soraia R. Mendes & Jason C. Klima & Marta Nadal & Ulrich Eckhard & Jorge Roel-Touris & Scott Houliston & Tibisay Guevara & Hugh K. Haddox & Adam Moyer & Cheryl H. Arrowsmith & , 2022. "De novo design of immunoglobulin-like domains," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Jaume Bonet & Sarah Wehrle & Karen Schriever & Che Yang & Anne Billet & Fabian Sesterhenn & Andreas Scheck & Freyr Sverrisson & Barbora Veselkova & Sabrina Vollers & Roxanne Lourman & Mélanie Villard , 2018. "Rosetta FunFolDes – A general framework for the computational design of functional proteins," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-30, November.
    14. Sowmiya Palani & Yuka Machida & Julia R. Alvey & Vandana Mishra & Allison L. Welter & Gaofeng Cui & Benoît Bragantini & Maria Victoria Botuyan & Anh T. Q. Cong & Georges Mer & Matthew J. Schellenberg , 2024. "Dimerization-dependent serine protease activity of FAM111A prevents replication fork stalling at topoisomerase 1 cleavage complexes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Kristin J. Adolfsen & Isolde Callihan & Catherine E. Monahan & Per Jr. Greisen & James Spoonamore & Munira Momin & Lauren E. Fitch & Mary Joan Castillo & Lindong Weng & Lauren Renaud & Carl J. Weile &, 2021. "Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    16. Karen J. Gonzalez & Jiachen Huang & Miria F. Criado & Avik Banerjee & Stephen M. Tompkins & Jarrod J. Mousa & Eva-Maria Strauch, 2024. "A general computational design strategy for stabilizing viral class I fusion proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Edward King & Sarah Maxel & Yulai Zhang & Karissa C. Kenney & Youtian Cui & Emma Luu & Justin B. Siegel & Gregory A. Weiss & Ray Luo & Han Li, 2022. "Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32159-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.