IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32030-8.html
   My bibliography  Save this article

A practical concept for catalytic carbonylations using carbon dioxide

Author

Listed:
  • Rui Sang

    (Leibniz-Institut für Katalyse e.V.)

  • Yuya Hu

    (Leibniz-Institut für Katalyse e.V.)

  • Rauf Razzaq

    (Leibniz-Institut für Katalyse e.V.)

  • Guillaume Mollaert

    (University of Antwerp)

  • Hanan Atia

    (Leibniz-Institut für Katalyse e.V.)

  • Ursula Bentrup

    (Leibniz-Institut für Katalyse e.V.)

  • Muhammad Sharif

    (Leibniz-Institut für Katalyse e.V.)

  • Helfried Neumann

    (Leibniz-Institut für Katalyse e.V.)

  • Henrik Junge

    (Leibniz-Institut für Katalyse e.V.)

  • Ralf Jackstell

    (Leibniz-Institut für Katalyse e.V.)

  • Bert U. W. Maes

    (University of Antwerp)

  • Matthias Beller

    (Leibniz-Institut für Katalyse e.V.)

Abstract

The rise of CO2 in atmosphere is considered as the major reason for global warming. Therefore, CO2 utilization has attracted more and more attention. Among those, using CO2 as C1-feedstock for the chemical industry provides a solution. Here we show a two-step cascade process to perform catalytic carbonylations of olefins, alkynes, and aryl halides utilizing CO2 and H2. For the first step, a novel heterogeneous copper 10Cu@SiO2-PHM catalyst exhibits high selectivity (≥98%) and decent conversion (27%) in generating CO from reducing CO2 with H2. The generated CO is directly utilized without further purification in industrially important carbonylation reactions: hydroformylation, alkoxycarbonylation, and aminocarbonylation. Notably, various aldehydes, (unsaturated) esters and amides are obtained in high yields and chemo-/regio-selectivities at low temperature under ambient pressure. Our approach is of interest for continuous syntheses in drug discovery and organic synthesis to produce building blocks on reasonable scale utilizing CO2.

Suggested Citation

  • Rui Sang & Yuya Hu & Rauf Razzaq & Guillaume Mollaert & Hanan Atia & Ursula Bentrup & Muhammad Sharif & Helfried Neumann & Henrik Junge & Ralf Jackstell & Bert U. W. Maes & Matthias Beller, 2022. "A practical concept for catalytic carbonylations using carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32030-8
    DOI: 10.1038/s41467-022-32030-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32030-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32030-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lingxiang Wang & Erjia Guan & Yeqing Wang & Liang Wang & Zhongmiao Gong & Yi Cui & Xiangju Meng & Bruce C. Gates & Feng-Shou Xiao, 2020. "Author Correction: Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    2. Roy van den Berg & Gonzalo Prieto & Gerda Korpershoek & Lars I. van der Wal & Arnoldus J. van Bunningen & Susanne Lægsgaard-Jørgensen & Petra E. de Jongh & Krijn P. de Jong, 2016. "Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    3. Qiang Liu & Lipeng Wu & Ralf Jackstell & Matthias Beller, 2015. "Using carbon dioxide as a building block in organic synthesis," Nature Communications, Nature, vol. 6(1), pages 1-15, May.
    4. Lingxiang Wang & Erjia Guan & Yeqing Wang & Liang Wang & Zhongmiao Gong & Yi Cui & Xiangju Meng & Bruce C. Gates & Feng-Shou Xiao, 2020. "Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuman Qin & Robin Cauwenbergh & Suman Pradhan & Rakesh Maiti & Philippe Franck & Shoubhik Das, 2023. "Straightforward synthesis of functionalized γ-Lactams using impure CO2 stream as the carbon source," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Serena Monticelli & Alex Talbot & Philipp Gotico & Fabien Caillé & Olivier Loreau & Antonio Vecchio & Augustin Malandain & Antoine Sallustrau & Winfried Leibl & Ally Aukauloo & Frédéric Taran & Zakari, 2023. "Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huai Chen & Yangyang Xiong & Jun Li & Jehad Abed & Da Wang & Adrián Pedrazo-Tardajos & Yueping Cao & Yiting Zhang & Ying Wang & Mohsen Shakouri & Qunfeng Xiao & Yongfeng Hu & Sara Bals & Edward H. Sar, 2023. "Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yushu Jin & Joaquim Caner & Shintaro Nishikawa & Naoyuki Toriumi & Nobuharu Iwasawa, 2022. "Catalytic direct hydrocarboxylation of styrenes with CO2 and H2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    4. Jing-Wen Hsueh & Lai-Hsiang Kuo & Po-Han Chen & Wan-Hsin Chen & Chi-Yao Chuang & Chia-Nung Kuo & Chin-Shan Lue & Yu-Ling Lai & Bo-Hong Liu & Chia-Hsin Wang & Yao-Jane Hsu & Chun-Liang Lin & Jyh-Pin Ch, 2024. "Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yu Zhang & Jaro Vanderghinste & Jinxin Wang & Shoubhik Das, 2024. "Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Yuman Qin & Robin Cauwenbergh & Suman Pradhan & Rakesh Maiti & Philippe Franck & Shoubhik Das, 2023. "Straightforward synthesis of functionalized γ-Lactams using impure CO2 stream as the carbon source," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Wei Zhang & Zhen Chen & Yuan-Xu Jiang & Li-Li Liao & Wei Wang & Jian-Heng Ye & Da-Gang Yu, 2023. "Arylcarboxylation of unactivated alkenes with CO2 via visible-light photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32030-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.