IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39240-8.html
   My bibliography  Save this article

Arylcarboxylation of unactivated alkenes with CO2 via visible-light photoredox catalysis

Author

Listed:
  • Wei Zhang

    (Sichuan University
    Sichuan University)

  • Zhen Chen

    (Sichuan University)

  • Yuan-Xu Jiang

    (Sichuan University)

  • Li-Li Liao

    (Chongqing University)

  • Wei Wang

    (Sichuan University)

  • Jian-Heng Ye

    (Sichuan University)

  • Da-Gang Yu

    (Sichuan University
    Nankai University)

Abstract

Photocatalytic carboxylation of alkenes with CO2 is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO2, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.

Suggested Citation

  • Wei Zhang & Zhen Chen & Yuan-Xu Jiang & Li-Li Liao & Wei Wang & Jian-Heng Ye & Da-Gang Yu, 2023. "Arylcarboxylation of unactivated alkenes with CO2 via visible-light photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39240-8
    DOI: 10.1038/s41467-023-39240-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39240-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39240-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiang Liu & Lipeng Wu & Ralf Jackstell & Matthias Beller, 2015. "Using carbon dioxide as a building block in organic synthesis," Nature Communications, Nature, vol. 6(1), pages 1-15, May.
    2. Yushu Jin & Joaquim Caner & Shintaro Nishikawa & Naoyuki Toriumi & Nobuharu Iwasawa, 2022. "Catalytic direct hydrocarboxylation of styrenes with CO2 and H2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Qiang Fu & Zhi-Yu Bo & Jian-Heng Ye & Tao Ju & He Huang & Li-Li Liao & Da-Gang Yu, 2019. "Transition metal-free phosphonocarboxylation of alkenes with carbon dioxide via visible-light photoredox catalysis," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong Zhang & Jabor Rabeah & Shoubhik Das, 2024. "Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zhang & Jaro Vanderghinste & Jinxin Wang & Shoubhik Das, 2024. "Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Yushu Jin & Joaquim Caner & Shintaro Nishikawa & Naoyuki Toriumi & Nobuharu Iwasawa, 2022. "Catalytic direct hydrocarboxylation of styrenes with CO2 and H2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    4. Rui Sang & Yuya Hu & Rauf Razzaq & Guillaume Mollaert & Hanan Atia & Ursula Bentrup & Muhammad Sharif & Helfried Neumann & Henrik Junge & Ralf Jackstell & Bert U. W. Maes & Matthias Beller, 2022. "A practical concept for catalytic carbonylations using carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yuman Qin & Robin Cauwenbergh & Suman Pradhan & Rakesh Maiti & Philippe Franck & Shoubhik Das, 2023. "Straightforward synthesis of functionalized γ-Lactams using impure CO2 stream as the carbon source," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39240-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.