IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31865-5.html
   My bibliography  Save this article

The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis

Author

Listed:
  • Mara De Marco Zompit

    (University of Zurich and University Hospital Zurich)

  • Mònica Torres Esteban

    (University of Zurich and University Hospital Zurich)

  • Clémence Mooser

    (University of Zurich and University Hospital Zurich)

  • Salomé Adam

    (Mount Sinai Hospital)

  • Silvia Emma Rossi

    (Mount Sinai Hospital)

  • Alain Jeanrenaud

    (University of Zurich and University Hospital Zurich)

  • Pia-Amata Leimbacher

    (University of Zurich and University Hospital Zurich)

  • Daniel Fink

    (University of Zurich and University Hospital Zurich)

  • Ann-Marie K. Shorrocks

    (University of Oxford, John Radcliffe Hospital)

  • Andrew N. Blackford

    (University of Oxford, John Radcliffe Hospital)

  • Daniel Durocher

    (Mount Sinai Hospital
    University of Toronto)

  • Manuel Stucki

    (University of Zurich and University Hospital Zurich)

Abstract

The accurate repair of DNA double-strand breaks (DSBs), highly toxic DNA lesions, is crucial for genome integrity and is tightly regulated during the cell cycle. In mitosis, cells inactivate DSB repair in favor of a tethering mechanism that stabilizes broken chromosomes until they are repaired in the subsequent cell cycle phases. How this is achieved mechanistically is not yet understood, but the adaptor protein TOPBP1 is critically implicated in this process. Here, we identify CIP2A as a TOPBP1-interacting protein that regulates TOPBP1 localization specifically in mitosis. Cells lacking CIP2A display increased radio-sensitivity, micronuclei formation and chromosomal instability. CIP2A is actively exported from the cell nucleus in interphase but, upon nuclear envelope breakdown at the onset of mitosis, gains access to chromatin where it forms a complex with MDC1 and TOPBP1 to promote TOPBP1 recruitment to sites of mitotic DSBs. Collectively, our data uncover CIP2A-TOPBP1 as a mitosis-specific genome maintenance complex.

Suggested Citation

  • Mara De Marco Zompit & Mònica Torres Esteban & Clémence Mooser & Salomé Adam & Silvia Emma Rossi & Alain Jeanrenaud & Pia-Amata Leimbacher & Daniel Fink & Ann-Marie K. Shorrocks & Andrew N. Blackford , 2022. "The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31865-5
    DOI: 10.1038/s41467-022-31865-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31865-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31865-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Wai Chan & Stephen C. West, 2014. "Spatial control of the GEN1 Holliday junction resolvase ensures genome stability," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    2. Stephen P. Jackson & Jiri Bartek, 2009. "The DNA-damage response in human biology and disease," Nature, Nature, vol. 461(7267), pages 1071-1078, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Zita Gál & Stavroula Boukoura & Kezia Catharina Oxe & Sara Badawi & Blanca Nieto & Lea Milling Korsholm & Sille Blangstrup Geisler & Ekaterina Dulina & Anna Vestergaard Rasmussen & Christina Dahl & We, 2024. "Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Halh Al-Serori & Franziska Ferk & Michael Kundi & Andrea Bileck & Christopher Gerner & Miroslav Mišík & Armen Nersesyan & Monika Waldherr & Manuel Murbach & Tamara T Lah & Christel Herold-Mende & Andr, 2018. "Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-17, April.
    5. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    6. Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    7. Miho M. Suzuki & Kenta Iijima & Koichi Ogami & Keiko Shinjo & Yoshiteru Murofushi & Jingqi Xie & Xuebing Wang & Yotaro Kitano & Akira Mamiya & Yuji Kibe & Tatsunori Nishimura & Fumiharu Ohka & Ryuta S, 2023. "TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    9. Sidrah Shah & Alison Cheung & Mikolaj Kutka & Matin Sheriff & Stergios Boussios, 2022. "Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes," IJERPH, MDPI, vol. 19(13), pages 1-14, July.
    10. Jérémy Sandoz & Max Cigrang & Amélie Zachayus & Philippe Catez & Lise-Marie Donnio & Clèmence Elly & Jadwiga Nieminuszczy & Pietro Berico & Cathy Braun & Sergey Alekseev & Jean-Marc Egly & Wojciech Ni, 2023. "Active mRNA degradation by EXD2 nuclease elicits recovery of transcription after genotoxic stress," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Jessica D. Tischler & Hiroshi Tsuchida & Rosevalentine Bosire & Tommy T. Oda & Ana Park & Richard O. Adeyemi, 2024. "FLIP(C1orf112)-FIGNL1 complex regulates RAD51 chromatin association to promote viability after replication stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Fei Sun & Nourhan Nashat Ali & Daniela Londoño-Vásquez & Constantine A. Simintiras & Huanyu Qiao & M. Sofia Ortega & Yuksel Agca & Masashi Takahashi & Rocío M. Rivera & Andrew M. Kelleher & Peter Suto, 2024. "Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    13. Lin-Lin Zhou & Tao Zhang & Yun Xue & Chuan Yue & Yihui Pan & Pengyu Wang & Teng Yang & Meixia Li & Hu Zhou & Kan Ding & Jianhua Gan & Hongbin Ji & Cai-Guang Yang, 2023. "Selective activator of human ClpP triggers cell cycle arrest to inhibit lung squamous cell carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Daniel Gómez-Cabello & George Pappas & Diana Aguilar-Morante & Christoffel Dinant & Jiri Bartek, 2022. "CtIP-dependent nascent RNA expression flanking DNA breaks guides the choice of DNA repair pathway," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Pedro Weickert & Hao-Yi Li & Maximilian J. Götz & Sophie Dürauer & Denitsa Yaneva & Shubo Zhao & Jacqueline Cordes & Aleida C. Acampora & Ignasi Forne & Axel Imhof & Julian Stingele, 2023. "SPRTN patient variants cause global-genome DNA-protein crosslink repair defects," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Pradeep Ramalingam & Michael C. Gutkin & Michael G. Poulos & Taylor Tillery & Chelsea Doughty & Agatha Winiarski & Ana G. Freire & Shahin Rafii & David Redmond & Jason M. Butler, 2023. "Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA Damage Response," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Andrea M. Kaminski & Kishore K. Chiruvella & Dale A. Ramsden & Katarzyna Bebenek & Thomas A. Kunkel & Lars C. Pedersen, 2022. "Analysis of diverse double-strand break synapsis with Polλ reveals basis for unique substrate specificity in nonhomologous end-joining," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Najmeh Soltanmohammadi & Siyao Wang & Björn Schumacher, 2022. "Somatic PMK-1/p38 signaling links environmental stress to germ cell apoptosis and heritable euploidy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Aldo S. Bader & Martin Bushell, 2023. "iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31865-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.