IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31861-9.html
   My bibliography  Save this article

Topology mediates transport of nanoparticles in macromolecular networks

Author

Listed:
  • Xiaobin Dai

    (Tsinghua University)

  • Xuanyu Zhang

    (Tsinghua University)

  • Lijuan Gao

    (Tsinghua University)

  • Ziyang Xu

    (Tsinghua University)

  • Li-Tang Yan

    (Tsinghua University)

Abstract

Diffusion transport of nanoparticles in confined environments of macromolecular networks is common in diverse physical systems and regulates many biological responses. Macromolecular networks possess various topologies, featured by different numbers of degrees and genera. Although the network topologies can be manipulated from a molecular level, how the topology impacts the transport of nanoparticles in macromolecular networks remains unexplored. Here, we develop theoretical approaches combined with simulations to study nanoparticle transport in a model system consisting of network cells with defined topologies. We find that the topology of network cells has a profound effect on the free energy landscape experienced by a nanoparticle in the network cells, exhibiting various scaling laws dictated by the topology. Furthermore, the examination of the impact of cell topology on the detailed behavior of nanoparticle dynamics leads to different dynamical regimes that go beyond the particulars regarding the local network loop. The results might alter the conventional picture of the physical origin of transport in networks.

Suggested Citation

  • Xiaobin Dai & Xuanyu Zhang & Lijuan Gao & Ziyang Xu & Li-Tang Yan, 2022. "Topology mediates transport of nanoparticles in macromolecular networks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31861-9
    DOI: 10.1038/s41467-022-31861-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31861-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31861-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Berner & Boris Müller & Juan Ruben Gomez-Solano & Matthias Krüger & Clemens Bechinger, 2018. "Oscillating modes of driven colloids in overdamped systems," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. S. Torquato & Y. Jiao, 2009. "Erratum: Dense packings of the Platonic and Archimedean solids," Nature, Nature, vol. 461(7265), pages 828-828, October.
    3. S. Torquato & Y. Jiao, 2009. "Dense packings of the Platonic and Archimedean solids," Nature, Nature, vol. 460(7257), pages 876-879, August.
    4. Zheng Wang & Yidong Chong & J. D. Joannopoulos & Marin Soljačić, 2009. "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Nature, vol. 461(7265), pages 772-775, October.
    5. Tiantian Zhang & Yi Jiang & Zhida Song & He Huang & Yuqing He & Zhong Fang & Hongming Weng & Chen Fang, 2019. "Catalogue of topological electronic materials," Nature, Nature, vol. 566(7745), pages 475-479, February.
    6. Lingxiang Jiang & Qingqiao Xie & Boyce Tsang & Steve Granick, 2019. "Single-crosslink microscopy in a biopolymer network dissects local elasticity from molecular fluctuations," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. Miaorong Yu & Lu Xu & Falin Tian & Qian Su & Nan Zheng & Yiwei Yang & Jiuling Wang & Aohua Wang & Chunliu Zhu & Shiyan Guo & XinXin Zhang & Yong Gan & Xinghua Shi & Huajian Gao, 2018. "Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    8. L. G. Chalmet & R. L. Francis & P. B. Saunders, 1982. "Network Models for Building Evacuation," Management Science, INFORMS, vol. 28(1), pages 86-105, January.
    9. Ye Shi & Ognjen Ilic & Harry A. Atwater & Julia R. Greer, 2021. "All-day fresh water harvesting by microstructured hydrogel membranes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Bohdan Senyuk & Qingkun Liu & Sailing He & Randall D. Kamien & Robert B. Kusner & Tom C. Lubensky & Ivan I. Smalyukh, 2013. "Topological colloids," Nature, Nature, vol. 493(7431), pages 200-205, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuanyu Zhang & Xiaobin Dai & Md Ahsan Habib & Lijuan Gao & Wenlong Chen & Wenjie Wei & Zhongqiu Tang & Xianyu Qi & Xiangjun Gong & Lingxiang Jiang & Li-Tang Yan, 2024. "Unconventionally fast transport through sliding dynamics of rodlike particles in macromolecular networks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    2. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    4. Salari, Nasir, 2022. "Electric vehicles adoption behaviour: Synthesising the technology readiness index with environmentalism values and instrumental attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 60-81.
    5. H. W. Hamacher & S. Tufekci, 1987. "On the use of lexicographic min cost flows in evacuation modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(4), pages 487-503, August.
    6. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Chunyu Guo & A. Alexandradinata & Carsten Putzke & Amelia Estry & Teng Tu & Nitesh Kumar & Feng-Ren Fan & Shengnan Zhang & Quansheng Wu & Oleg V. Yazyev & Kent R. Shirer & Maja D. Bachmann & Hailin Pe, 2021. "Temperature dependence of quantum oscillations from non-parabolic dispersions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Alf Kimms & Marc Maiwald, 2017. "An exact network flow formulation for cell‐based evacuation in urban areas," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(7), pages 547-555, October.
    10. Ismaila Abderhamane Ndiaye & Emmanuel Neron & Antoine Jouglet, 2017. "Macroscopic evacuation plans for natural disasters," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 231-272, January.
    11. Shin, Youngchul & Moon, Ilkyeong, 2023. "Robust building evacuation planning in a dynamic network flow model under collapsible nodes and arcs," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    12. Huibo Bi, 2014. "Routing Diverse Evacuees with the Cognitive Packet Network Algorithm," Future Internet, MDPI, vol. 6(2), pages 1-20, April.
    13. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Duives, Dorine C. & Daamen, Winnie & Hoogendoorn, Serge P., 2016. "Continuum modelling of pedestrian flows — Part 2: Sensitivity analysis featuring crowd movement phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 36-48.
    15. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Alexander B. Khanikaev & Andrea Alù, 2024. "Topological photonics: robustness and beyond," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    17. Francisco Pérez‐Villalonga & Javier Salmerón & Kevin Wood, 2008. "Dynamic evacuation routes for personnel on a naval ship," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 785-799, December.
    18. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Bretschneider, S. & Kimms, A., 2011. "A basic mathematical model for evacuation problems in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 523-539, July.
    20. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31861-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.