IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v6y2014i2p203-222d35239.html
   My bibliography  Save this article

Routing Diverse Evacuees with the Cognitive Packet Network Algorithm

Author

Listed:
  • Huibo Bi

    (Intelligent Systems and Networks Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, UK)

Abstract

Regarding mobility, health conditions and personal preferences, evacuees can be categorized into different classes in realistic environments. Previous emergency navigation algorithms that direct evacuees with a single decision rule cannot fulfil civilians’ distinct service requirements and increase the likelihood of inducing destructive crowd behaviours, such as clogging, pushing and trampling, due to diverse mobility. This paper explores a distributed emergency navigation algorithm that employs the cognitive packet network concept to tailor different quality of service needs to different categories of evacuees. In addition, a congestion-aware algorithm is presented to predict the future congestion degree of a path with respect to the observed population density, arrival rate and service rate of each route segment. Experiments are implemented in a simulated environment populated with autonomous agents. Results show that our algorithm can increase the number of survivors while providing improved quality of service.

Suggested Citation

  • Huibo Bi, 2014. "Routing Diverse Evacuees with the Cognitive Packet Network Algorithm," Future Internet, MDPI, vol. 6(2), pages 1-20, April.
  • Handle: RePEc:gam:jftint:v:6:y:2014:i:2:p:203-222:d:35239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/6/2/203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/6/2/203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Antoine Desmet & Erol Gelenbe, 2013. "Graph and Analytical Models for Emergency Evacuation," Future Internet, MDPI, vol. 5(1), pages 1-10, February.
    3. Erol Gelenbe, 2003. "Sensible decisions based on QoS," Computational Management Science, Springer, vol. 1(1), pages 1-14, December.
    4. Gelenbe, Erol & Cao, Yonghuan, 1998. "Autonomous search for mines," European Journal of Operational Research, Elsevier, vol. 108(2), pages 319-333, July.
    5. L. G. Chalmet & R. L. Francis & P. B. Saunders, 1982. "Network Models for Building Evacuation," Management Science, INFORMS, vol. 28(1), pages 86-105, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Fragkos & Pavlos Athanasios Apostolopoulos & Eirini Eleni Tsiropoulou, 2019. "ESCAPE: Evacuation Strategy through Clustering and Autonomous Operation in Public Safety Systems," Future Internet, MDPI, vol. 11(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Han, 2013. "Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm," Future Internet, MDPI, vol. 5(4), pages 1-20, October.
    2. Lichun Chen & Elise Miller‐Hooks, 2008. "The building evacuation problem with shared information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 363-376, June.
    3. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Erol Gelenbe & Fang-Jing Wu, 2013. "Future Research on Cyber-Physical Emergency Management Systems," Future Internet, MDPI, vol. 5(3), pages 1-19, June.
    5. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    6. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    8. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    9. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    10. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    11. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    12. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
    13. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    14. Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.
    15. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    16. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    17. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Sungryong Bae & Jun-Ho Choi & Hong Sun Ryou, 2020. "Modification of Interaction Forces between Smoke and Evacuees," Energies, MDPI, vol. 13(16), pages 1-10, August.
    19. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    20. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:6:y:2014:i:2:p:203-222:d:35239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.