Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-39655-3
Download full text from publisher
References listed on IDEAS
- Johanna Funk & Felipe Merino & Matthias Schaks & Klemens Rottner & Stefan Raunser & Peter Bieling, 2021. "A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
- Shashank Shekhar & Mikael Kerleau & Sonja Kühn & Julien Pernier & Guillaume Romet-Lemonne & Antoine Jégou & Marie-France Carlier, 2015. "Formin and capping protein together embrace the actin filament in a ménage à trois," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexander Belyy & Florian Lindemann & Daniel Roderer & Johanna Funk & Benjamin Bardiaux & Jonas Protze & Peter Bieling & Hartmut Oschkinat & Stefan Raunser, 2022. "Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Micaela Boiero Sanders & Wout Oosterheert & Oliver Hofnagel & Peter Bieling & Stefan Raunser, 2024. "Phalloidin and DNase I-bound F-actin pointed end structures reveal principles of filament stabilization and disassembly," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Ewa Sitarska & Silvia Dias Almeida & Marianne Sandvold Beckwith & Julian Stopp & Jakub Czuchnowski & Marc Siggel & Rita Roessner & Aline Tschanz & Christer Ejsing & Yannick Schwab & Jan Kosinski & Mic, 2023. "Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Tommi Kotila & Hugo Wioland & Muniyandi Selvaraj & Konstantin Kogan & Lina Antenucci & Antoine Jégou & Juha T. Huiskonen & Guillaume Romet-Lemonne & Pekka Lappalainen, 2022. "Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39655-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.