IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31560-5.html
   My bibliography  Save this article

A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage

Author

Listed:
  • Varvara E. Zemskova

    (University of Toronto)

  • Tai-Long He

    (University of Toronto)

  • Zirui Wan

    (University of Toronto)

  • Nicolas Grisouard

    (University of Toronto)

Abstract

Uptake of atmospheric carbon by the ocean, especially at high latitudes, plays an important role in offsetting anthropogenic emissions. At the surface of the Southern Ocean south of 30∘S, the ocean carbon uptake, which had been weakening in 1990s, strengthened in the 2000s. However, sparseness of in-situ measurements in the ocean interior make it difficult to compute changes in carbon storage below the surface. Here we develop a machine-learning model, which can estimate concentrations of dissolved inorganic carbon (DIC) in the Southern Ocean up to 4 km depth only using data available at the ocean surface. Our model is fast and computationally inexpensive. We apply it to calculate trends in DIC concentrations over the past three decades and find that DIC decreased in the 1990s and 2000s, but has increased, in particular in the upper ocean since the 2010s. However, the particular circulation dynamics that drove these changes may have differed across zonal sectors of the Southern Ocean. While the near-surface decrease in DIC concentrations would enhance atmospheric CO2 uptake continuing the previously-found trends, weakened connectivity between surface and deep layers and build-up of DIC in deep waters could reduce the ocean’s carbon storage potential.

Suggested Citation

  • Varvara E. Zemskova & Tai-Long He & Zirui Wan & Nicolas Grisouard, 2022. "A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31560-5
    DOI: 10.1038/s41467-022-31560-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31560-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31560-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Alexander Haumann & Nicolas Gruber & Matthias Münnich & Ivy Frenger & Stefan Kern, 2016. "Sea-ice transport driving Southern Ocean salinity and its recent trends," Nature, Nature, vol. 537(7618), pages 89-92, September.
    2. Libao Gao & Stephen R. Rintoul & Weidong Yu, 2018. "Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage," Nature Climate Change, Nature, vol. 8(1), pages 58-63, January.
    3. Tim DeVries & Mark Holzer & Francois Primeau, 2017. "Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning," Nature, Nature, vol. 542(7640), pages 215-218, February.
    4. Tom R. Andersson & J. Scott Hosking & María Pérez-Ortiz & Brooks Paige & Andrew Elliott & Chris Russell & Stephen Law & Daniel C. Jones & Jeremy Wilkinson & Tony Phillips & James Byrne & Steffen Tiets, 2021. "Seasonal Arctic sea ice forecasting with probabilistic deep learning," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," PIER Working Paper Archive 22-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Camille Hayatte Akhoudas & Jean-Baptiste Sallée & Gilles Reverdin & F. Alexander Haumann & Etienne Pauthenet & Christopher C. Chapman & Félix Margirier & Claire Lo Monaco & Nicolas Metzl & Julie Meill, 2023. "Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023. "Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models," Energy Economics, Elsevier, vol. 124(C).
    4. Shufen Pang & Mazlinawati Abdul Majid & Hadinnapola Appuhamilage Chintha Crishanthi Perera & Mohammad Saydul Islam Sarkar & Jia Ning & Weikang Zhai & Ran Guo & Yuncheng Deng & Haiwen Zhang, 2024. "A Systematic Review and Global Trends on Blue Carbon and Sustainable Development: A Bibliometric Study from 2012 to 2023," Sustainability, MDPI, vol. 16(6), pages 1-31, March.
    5. Daniel Keaney & Brigid Lucey & Karen Finn, 2024. "A Review of Environmental Challenges Facing Martian Colonisation and the Potential for Terrestrial Microbes to Transform a Toxic Extraterrestrial Environment," Challenges, MDPI, vol. 15(1), pages 1-21, January.
    6. Debbrota Mallick & Eric Po Keung Tsang & John Chi-Kin Lee & Chi Chiu Cheang, 2023. "Marine Environmental Knowledge and Attitudes among University Students in Hong Kong: An Application of the Ocean Literacy Framework," IJERPH, MDPI, vol. 20(6), pages 1-21, March.
    7. Zhi Li & Matthew H. England & Sjoerd Groeskamp, 2023. "Recent acceleration in global ocean heat accumulation by mode and intermediate waters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Libao Gao & Xiaojun Yuan & Wenju Cai & Guijun Guo & Weidong Yu & Jiuxin Shi & Fangli Qiao & Zexun Wei & Guy D. Williams, 2024. "Persistent warm-eddy transport to Antarctic ice shelves driven by enhanced summer westerlies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Gagan Mandal & Shih-Yu Lee & Jia-Yuh Yu, 2021. "The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    10. Kenza Himmich & Martin Vancoppenolle & Gurvan Madec & Jean-Baptiste Sallée & Paul R. Holland & Marion Lebrun, 2023. "Drivers of Antarctic sea ice advance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yusen Liu & Cheng Sun & Jianping Li & Fred Kucharski & Emanuele Lorenzo & Muhammad Adnan Abid & Xichen Li, 2023. "Decadal oscillation provides skillful multiyear predictions of Antarctic sea ice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Lorenzo Forni & Mehrab Kiarsi, 2023. "Optimal Climate and Monetary-Fiscal Policy in a Climate-DSGE Framework," "Marco Fanno" Working Papers 0299, Dipartimento di Scienze Economiche "Marco Fanno".
    13. Gagan Mandal & Jia-Yuh Yu & Shih-Yu Lee, 2022. "The Roles of Orbital and Meltwater Climate Forcings on the Southern Ocean Dynamics during the Last Deglaciation," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    14. Daniel Lach & Jaroslaw Polanski & Maciej Kapkowski, 2022. "CO 2 —A Crisis or Novel Functionalization Opportunity?," Energies, MDPI, vol. 15(5), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31560-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.