IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v15y2024i1p5-d1317851.html
   My bibliography  Save this article

A Review of Environmental Challenges Facing Martian Colonisation and the Potential for Terrestrial Microbes to Transform a Toxic Extraterrestrial Environment

Author

Listed:
  • Daniel Keaney

    (Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland)

  • Brigid Lucey

    (Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland)

  • Karen Finn

    (Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Old Dublin Road, H91 T8NW Galway, Ireland)

Abstract

Mars is a focus of New Space Age exploration and colonisation, but there are significant challenges to successful colonisation by humankind. Environmental microbes play a key role in supporting the ecosystems of Earth, especially within the biodegradation and bioremediation sectors. However, the repurposed roles of microbes on Mars and their associated uses to colonists remain incompletely defined. The aim of this review was to examine the key roles of microbes on Earth and how they have been employed by humans to tackle four pivotal environmental challenges associated with the colonisation of Mars, namely the physical environment, the creation of a hospitable environment via terraforming, environmental sustainability and life support, and finally, renewable processing technologies. Some species of microbes were found to be tolerant of the ever-changing physical environment on Mars (freeze–thaw and UVC exposure) making them useful for bioremediation applications. Employing perchlorate-remediating microbes for their ability to bioremediate the soils of sodium perchlorate, which is present in Martian soils, in addition to their innate ability to cycle nutrients through the biosphere showed promise in establishing sustained crops to support colonists. The employment of terrestrial environmental microbes is a necessary part of overcoming key environmental challenges to successfully colonise Mars. Without this, future New Space exploration is unlikely to be successful.

Suggested Citation

  • Daniel Keaney & Brigid Lucey & Karen Finn, 2024. "A Review of Environmental Challenges Facing Martian Colonisation and the Potential for Terrestrial Microbes to Transform a Toxic Extraterrestrial Environment," Challenges, MDPI, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:gam:jchals:v:15:y:2024:i:1:p:5-:d:1317851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/15/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/15/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoagland, Porter & Beaulieu, Stace & Tivey, Maurice A. & Eggert, Roderick G. & German, Christopher & Glowka, Lyle & Lin, Jian, 2010. "Deep-sea mining of seafloor massive sulfides," Marine Policy, Elsevier, vol. 34(3), pages 728-732, May.
    2. Francis H. Chapelle & Kathleen O'Neill & Paul M. Bradley & Barbara A. Methé & Stacy A. Ciufo & LeRoy L. Knobel & Derek R. Lovley, 2002. "A hydrogen-based subsurface microbial community dominated by methanogens," Nature, Nature, vol. 415(6869), pages 312-315, January.
    3. Matthew S. Dodd & Dominic Papineau & Tor Grenne & John F. Slack & Martin Rittner & Franco Pirajno & Jonathan O’Neil & Crispin T. S. Little, 2017. "Evidence for early life in Earth’s oldest hydrothermal vent precipitates," Nature, Nature, vol. 543(7643), pages 60-64, March.
    4. Tim DeVries & Mark Holzer & Francois Primeau, 2017. "Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning," Nature, Nature, vol. 542(7640), pages 215-218, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertram, Christine & Krätschell, Anna & O’Brien, Killian & Brückmann, Warner & Proelss, Alexander & Rehdanz, Katrin, 2011. "Metalliferous sediments in the Atlantis II Deep—Assessing the geological and economic resource potential and legal constraints," Resources Policy, Elsevier, vol. 36(4), pages 315-329.
    2. Fox, Sarah Jane, 2022. "‘Exploiting – land, sea and space: Mineral superpower’ In the name of peace: A critical race to protect the depths and heights," Resources Policy, Elsevier, vol. 79(C).
    3. Lu Wang & Zhijun Jin & Xiao Chen & Yutong Su & Xiaowei Huang, 2023. "The Origin and Occurrence of Natural Hydrogen," Energies, MDPI, vol. 16(5), pages 1-18, March.
    4. Shufen Pang & Mazlinawati Abdul Majid & Hadinnapola Appuhamilage Chintha Crishanthi Perera & Mohammad Saydul Islam Sarkar & Jia Ning & Weikang Zhai & Ran Guo & Yuncheng Deng & Haiwen Zhang, 2024. "A Systematic Review and Global Trends on Blue Carbon and Sustainable Development: A Bibliometric Study from 2012 to 2023," Sustainability, MDPI, vol. 16(6), pages 1-31, March.
    5. Debbrota Mallick & Eric Po Keung Tsang & John Chi-Kin Lee & Chi Chiu Cheang, 2023. "Marine Environmental Knowledge and Attitudes among University Students in Hong Kong: An Application of the Ocean Literacy Framework," IJERPH, MDPI, vol. 20(6), pages 1-21, March.
    6. Chang, Jui-Jen & Ho, Cheng-Yu & Mao, Chi-Tang & Barham, Nathan & Huang, Yu-Rong & Ho, Feng-Ju & Wu, Yueh-Chin & Hou, Yu-Han & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2014. "A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production," Applied Energy, Elsevier, vol. 132(C), pages 465-474.
    7. Sebastian Ernst Volkmann & Felix Lehnen & Peter A. Kukla, 2019. "Estimating the economics of a mining project on seafloor manganese nodules," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(3), pages 287-306, November.
    8. Van Dover, C.L. & Aronson, J. & Pendleton, L. & Smith, S. & Arnaud-Haond, S. & Moreno-Mateos, D. & Barbier, E. & Billett, D. & Bowers, K. & Danovaro, R. & Edwards, A. & Kellert, S. & Morato, T. & Poll, 2014. "Ecological restoration in the deep sea: Desiderata," Marine Policy, Elsevier, vol. 44(C), pages 98-106.
    9. Tamara N. Nazina & Leyla A. Abukova & Tatiana P. Tourova & Tamara L. Babich & Salimat K. Bidzhieva & Nataliya G. Loiko & Dina S. Filippova & Elisaveta A. Safarova, 2023. "Biodiversity and Potential Activity of Microorganisms in Underground Gas Storage Horizons," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    10. Harald Ulrik Sverdrup & Kristin Vala Ragnarsdottir & Deniz Koca, 2017. "Integrated Modelling of the Global Cobalt Extraction, Supply, Price and Depletion of Extractable Resources Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-29, March.
    11. Lorenzo Forni & Mehrab Kiarsi, 2023. "Optimal Climate and Monetary-Fiscal Policy in a Climate-DSGE Framework," "Marco Fanno" Working Papers 0299, Dipartimento di Scienze Economiche "Marco Fanno".
    12. Rasmus Noss Bang & Lars-Kristian Lunde Trellevik, 2023. "Reserve-dependent capital efficiency, cross-sector competition, and mineral security considerations in mineral industry transition," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 383-400, September.
    13. Varvara E. Zemskova & Tai-Long He & Zirui Wan & Nicolas Grisouard, 2022. "A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Daniel Lach & Jaroslaw Polanski & Maciej Kapkowski, 2022. "CO 2 —A Crisis or Novel Functionalization Opportunity?," Energies, MDPI, vol. 15(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:15:y:2024:i:1:p:5-:d:1317851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.