IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31353-w.html
   My bibliography  Save this article

Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression

Author

Listed:
  • Shuting Yan

    (New York University)

  • Qiyao Zhu

    (New York University)

  • Swati Jain

    (New York University)

  • Tamar Schlick

    (New York University
    New York University
    NYU Shanghai
    New York University)

Abstract

The SARS-CoV-2 frameshifting element (FSE), a highly conserved mRNA region required for correct translation of viral polyproteins, defines an excellent therapeutic target against Covid-19. As discovered by our prior graph-theory analysis with SHAPE experiments, the FSE adopts a heterogeneous, length-dependent conformational landscape consisting of an assumed 3-stem H-type pseudoknot (graph motif 3_6), and two alternative motifs (3_3 and 3_5). Here, for the first time, we build and simulate, by microsecond molecular dynamics, 30 models for all three motifs plus motif-stabilizing mutants at different lengths. Our 3_6 pseudoknot systems, which agree with experimental structures, reveal interconvertible L and linear conformations likely related to ribosomal pausing and frameshifting. The 3_6 mutant inhibits this transformation and could hamper frameshifting. Our 3_3 systems exhibit length-dependent stem interactions that point to a potential transition pathway connecting the three motifs during ribosomal elongation. Together, our observations provide new insights into frameshifting mechanisms and anti-viral strategies.

Suggested Citation

  • Shuting Yan & Qiyao Zhu & Swati Jain & Tamar Schlick, 2022. "Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31353-w
    DOI: 10.1038/s41467-022-31353-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31353-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31353-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin-Der Wen & Laura Lancaster & Courtney Hodges & Ana-Carolina Zeri & Shige H. Yoshimura & Harry F. Noller & Carlos Bustamante & Ignacio Tinoco, 2008. "Following translation by single ribosomes one codon at a time," Nature, Nature, vol. 452(7187), pages 598-603, April.
    2. Krishna Neupane & Meng Zhao & Aaron Lyons & Sneha Munshi & Sandaru M. Ileperuma & Dustin B. Ritchie & Noel Q. Hoffer & Abhishek Narayan & Michael T. Woodside, 2021. "Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Brian Houck-Loomis & Michael A. Durney & Carolina Salguero & Neelaabh Shankar & Julia M. Nagle & Stephen P. Goff & Victoria M. D’Souza, 2011. "An equilibrium-dependent retroviral mRNA switch regulates translational recoding," Nature, Nature, vol. 480(7378), pages 561-564, December.
    4. Olivier Namy & Stephen J. Moran & David I. Stuart & Robert J. C. Gilbert & Ian Brierley, 2006. "A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting," Nature, Nature, vol. 441(7090), pages 244-247, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris H. Hill & Lukas Pekarek & Sawsan Napthine & Anuja Kibe & Andrew E. Firth & Stephen C. Graham & Neva Caliskan & Ian Brierley, 2021. "Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Chen Bao & Mingyi Zhu & Inna Nykonchuk & Hironao Wakabayashi & David H. Mathews & Dmitri N. Ermolenko, 2022. "Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Brett M. O’Brien & Roumita Moulick & Gabriel Jiménez-Avalos & Nandakumar Rajasekaran & Christian M. Kaiser & Sarah A. Woodson, 2024. "Stick-slip unfolding favors self-association of expanded HTT mRNA," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Tammy C. T. Lan & Matty F. Allan & Lauren E. Malsick & Jia Z. Woo & Chi Zhu & Fengrui Zhang & Stuti Khandwala & Sherry S. Y. Nyeo & Yu Sun & Junjie U. Guo & Mark Bathe & Anders Näär & Anthony Griffith, 2022. "Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Yosuke Ito & Yuhei Chadani & Tatsuya Niwa & Ayako Yamakawa & Kodai Machida & Hiroaki Imataka & Hideki Taguchi, 2022. "Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Matthias M. Zimmer & Anuja Kibe & Ulfert Rand & Lukas Pekarek & Liqing Ye & Stefan Buck & Redmond P. Smyth & Luka Cicin-Sain & Neva Caliskan, 2021. "The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31353-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.