IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27400-7.html
   My bibliography  Save this article

Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch

Author

Listed:
  • Chris H. Hill

    (Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road
    MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave
    University of York, Wentworth Way)

  • Lukas Pekarek

    (Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI))

  • Sawsan Napthine

    (Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road)

  • Anuja Kibe

    (Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI))

  • Andrew E. Firth

    (Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road)

  • Stephen C. Graham

    (Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road)

  • Neva Caliskan

    (Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)
    Medical Faculty, Julius-Maximilians University Würzburg, Josef-Schneider-Straße 2/D15)

  • Ian Brierley

    (Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road)

Abstract

Programmed –1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection.

Suggested Citation

  • Chris H. Hill & Lukas Pekarek & Sawsan Napthine & Anuja Kibe & Andrew E. Firth & Stephen C. Graham & Neva Caliskan & Ian Brierley, 2021. "Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27400-7
    DOI: 10.1038/s41467-021-27400-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27400-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27400-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin-Der Wen & Laura Lancaster & Courtney Hodges & Ana-Carolina Zeri & Shige H. Yoshimura & Harry F. Noller & Carlos Bustamante & Ignacio Tinoco, 2008. "Following translation by single ribosomes one codon at a time," Nature, Nature, vol. 452(7187), pages 598-603, April.
    2. Jin Chen & Alexey Petrov & Magnus Johansson & Albert Tsai & Seán E. O’Leary & Joseph D. Puglisi, 2014. "Dynamic pathways of −1 translational frameshifting," Nature, Nature, vol. 512(7514), pages 328-332, August.
    3. Lars V. Bock & Neva Caliskan & Natalia Korniy & Frank Peske & Marina V. Rodnina & Helmut Grubmüller, 2019. "Thermodynamic control of −1 programmed ribosomal frameshifting," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Sawsan Napthine & Roger Ling & Leanne K. Finch & Joshua D. Jones & Susanne Bell & Ian Brierley & Andrew E. Firth, 2017. "Protein-directed ribosomal frameshifting temporally regulates gene expression," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    5. Anna B. Loveland & Gabriel Demo & Andrei A. Korostelev, 2020. "Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading," Nature, Nature, vol. 584(7822), pages 640-645, August.
    6. Olivier Namy & Stephen J. Moran & David I. Stuart & Robert J. C. Gilbert & Ian Brierley, 2006. "A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting," Nature, Nature, vol. 441(7090), pages 244-247, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuting Yan & Qiyao Zhu & Swati Jain & Tamar Schlick, 2022. "Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Matthias M. Zimmer & Anuja Kibe & Ulfert Rand & Lukas Pekarek & Liqing Ye & Stefan Buck & Redmond P. Smyth & Luka Cicin-Sain & Neva Caliskan, 2021. "The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Chen Bao & Mingyi Zhu & Inna Nykonchuk & Hironao Wakabayashi & David H. Mathews & Dmitri N. Ermolenko, 2022. "Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Sakshi Jain & Lukasz Koziej & Panagiotis Poulis & Igor Kaczmarczyk & Monika Gaik & Michal Rawski & Namit Ranjan & Sebastian Glatt & Marina V. Rodnina, 2023. "Modulation of translational decoding by m6A modification of mRNA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Dylan Girodat & Hans-Joachim Wieden & Scott C. Blanchard & Karissa Y. Sanbonmatsu, 2023. "Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Valentyn Petrychenko & Bee-Zen Peng & Ana C. A. P. Schwarzer & Frank Peske & Marina V. Rodnina & Niels Fischer, 2021. "Structural mechanism of GTPase-powered ribosome-tRNA movement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Christine E. Carbone & Anna B. Loveland & Howard B. Gamper & Ya-Ming Hou & Gabriel Demo & Andrei A. Korostelev, 2021. "Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Timo Flügel & Magdalena Schacherl & Anett Unbehaun & Birgit Schroeer & Marylena Dabrowski & Jörg Bürger & Thorsten Mielke & Thiemo Sprink & Christoph A. Diebolder & Yollete V. Guillén Schlippe & Chris, 2024. "Transient disome complex formation in native polysomes during ongoing protein synthesis captured by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Yosuke Ito & Yuhei Chadani & Tatsuya Niwa & Ayako Yamakawa & Kodai Machida & Hiroaki Imataka & Hideki Taguchi, 2022. "Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Panagiotis Poulis & Anoshi Patel & Marina V. Rodnina & Sarah Adio, 2022. "Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Ritwika S. Basu & Michael B. Sherman & Matthieu G. Gagnon, 2022. "Compact IF2 allows initiator tRNA accommodation into the P site and gates the ribosome to elongation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27400-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.