IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25085-6.html
   My bibliography  Save this article

Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers

Author

Listed:
  • Krishna Neupane

    (University of Alberta)

  • Meng Zhao

    (University of Alberta)

  • Aaron Lyons

    (University of Alberta)

  • Sneha Munshi

    (University of Alberta)

  • Sandaru M. Ileperuma

    (University of Alberta)

  • Dustin B. Ritchie

    (University of Alberta)

  • Noel Q. Hoffer

    (University of Alberta)

  • Abhishek Narayan

    (University of Alberta)

  • Michael T. Woodside

    (University of Alberta
    University of Alberta)

Abstract

The RNA pseudoknot that stimulates programmed ribosomal frameshifting in SARS-CoV-2 is a possible drug target. To understand how it responds to mechanical tension applied by ribosomes, thought to play a key role during frameshifting, we probe its structural dynamics using optical tweezers. We find that it forms multiple structures: two pseudoknotted conformers with different stability and barriers, and alternative stem-loop structures. The pseudoknotted conformers have distinct topologies, one threading the 5′ end through a 3-helix junction to create a knot-like fold, the other with unthreaded 5′ end, consistent with structures observed via cryo-EM and simulations. Refolding of the pseudoknotted conformers starts with stem 1, followed by stem 3 and lastly stem 2; Mg2+ ions are not required, but increase pseudoknot mechanical rigidity and favor formation of the knot-like conformer. These results resolve the SARS-CoV-2 frameshift signal folding mechanism and highlight its conformational heterogeneity, with important implications for structure-based drug-discovery efforts.

Suggested Citation

  • Krishna Neupane & Meng Zhao & Aaron Lyons & Sneha Munshi & Sandaru M. Ileperuma & Dustin B. Ritchie & Noel Q. Hoffer & Abhishek Narayan & Michael T. Woodside, 2021. "Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25085-6
    DOI: 10.1038/s41467-021-25085-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25085-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25085-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuting Yan & Qiyao Zhu & Swati Jain & Tamar Schlick, 2022. "Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Tammy C. T. Lan & Matty F. Allan & Lauren E. Malsick & Jia Z. Woo & Chi Zhu & Fengrui Zhang & Stuti Khandwala & Sherry S. Y. Nyeo & Yu Sun & Junjie U. Guo & Mark Bathe & Anders Näär & Anthony Griffith, 2022. "Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Brett M. O’Brien & Roumita Moulick & Gabriel Jiménez-Avalos & Nandakumar Rajasekaran & Christian M. Kaiser & Sarah A. Woodson, 2024. "Stick-slip unfolding favors self-association of expanded HTT mRNA," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Matthias M. Zimmer & Anuja Kibe & Ulfert Rand & Lukas Pekarek & Liqing Ye & Stefan Buck & Redmond P. Smyth & Luka Cicin-Sain & Neva Caliskan, 2021. "The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25085-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.