IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27431-0.html
   My bibliography  Save this article

The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting

Author

Listed:
  • Matthias M. Zimmer

    (Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research))

  • Anuja Kibe

    (Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research))

  • Ulfert Rand

    (Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7)

  • Lukas Pekarek

    (Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research))

  • Liqing Ye

    (Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research))

  • Stefan Buck

    (Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research))

  • Redmond P. Smyth

    (Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research)
    Julius-Maximilians University Würzburg)

  • Luka Cicin-Sain

    (Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7)

  • Neva Caliskan

    (Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research)
    Julius-Maximilians University Würzburg)

Abstract

Programmed ribosomal frameshifting (PRF) is a fundamental gene expression event in many viruses, including SARS-CoV-2. It allows production of essential viral, structural and replicative enzymes that are encoded in an alternative reading frame. Despite the importance of PRF for the viral life cycle, it is still largely unknown how and to what extent cellular factors alter mechanical properties of frameshift elements and thereby impact virulence. This prompted us to comprehensively dissect the interplay between the SARS-CoV-2 frameshift element and the host proteome. We reveal that the short isoform of the zinc-finger antiviral protein (ZAP-S) is a direct regulator of PRF in SARS-CoV-2 infected cells. ZAP-S overexpression strongly impairs frameshifting and inhibits viral replication. Using in vitro ensemble and single-molecule techniques, we further demonstrate that ZAP-S directly interacts with the SARS-CoV-2 RNA and interferes with the folding of the frameshift RNA element. Together, these data identify ZAP-S as a host-encoded inhibitor of SARS-CoV-2 frameshifting and expand our understanding of RNA-based gene regulation.

Suggested Citation

  • Matthias M. Zimmer & Anuja Kibe & Ulfert Rand & Lukas Pekarek & Liqing Ye & Stefan Buck & Redmond P. Smyth & Luka Cicin-Sain & Neva Caliskan, 2021. "The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27431-0
    DOI: 10.1038/s41467-021-27431-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27431-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27431-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zbigniew Pietras & Magdalena A. Wojcik & Lukasz S. Borowski & Maciej Szewczyk & Tomasz M. Kulinski & Dominik Cysewski & Piotr P. Stepien & Andrzej Dziembowski & Roman J. Szczesny, 2018. "Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    2. David E. Gordon & Gwendolyn M. Jang & Mehdi Bouhaddou & Jiewei Xu & Kirsten Obernier & Kris M. White & Matthew J. O’Meara & Veronica V. Rezelj & Jeffrey Z. Guo & Danielle L. Swaney & Tia A. Tummino & , 2020. "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing," Nature, Nature, vol. 583(7816), pages 459-468, July.
    3. Ashton Trey Belew & Arturas Meskauskas & Sharmishtha Musalgaonkar & Vivek M. Advani & Sergey O. Sulima & Wojciech K. Kasprzak & Bruce A. Shapiro & Jonathan D. Dinman, 2014. "Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway," Nature, Nature, vol. 512(7514), pages 265-269, August.
    4. Jin Chen & Alexey Petrov & Magnus Johansson & Albert Tsai & Seán E. O’Leary & Joseph D. Puglisi, 2014. "Dynamic pathways of −1 translational frameshifting," Nature, Nature, vol. 512(7514), pages 328-332, August.
    5. Sawsan Napthine & Roger Ling & Leanne K. Finch & Joshua D. Jones & Susanne Bell & Ian Brierley & Andrew E. Firth, 2017. "Protein-directed ribosomal frameshifting temporally regulates gene expression," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    6. Markus Sauer & Stefan A. Juranek & James Marks & Alessio Magis & Hinke G. Kazemier & Daniel Hilbig & Daniel Benhalevy & Xiantao Wang & Markus Hafner & Katrin Paeschke, 2019. "DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    7. Krishna Neupane & Meng Zhao & Aaron Lyons & Sneha Munshi & Sandaru M. Ileperuma & Dustin B. Ritchie & Noel Q. Hoffer & Abhishek Narayan & Michael T. Woodside, 2021. "Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Sejal Vyas & Melissa Chesarone-Cataldo & Tanya Todorova & Yun-Han Huang & Paul Chang, 2013. "A systematic analysis of the PARP protein family identifies new functions critical for cell physiology," Nature Communications, Nature, vol. 4(1), pages 1-13, October.
    9. Xiaomeng Liang & Mei-Qing Zuo & Yunyang Zhang & Ningning Li & Chengying Ma & Meng-Qiu Dong & Ning Gao, 2020. "Structural snapshots of human pre-60S ribosomal particles before and after nuclear export," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris H. Hill & Lukas Pekarek & Sawsan Napthine & Anuja Kibe & Andrew E. Firth & Stephen C. Graham & Neva Caliskan & Ian Brierley, 2021. "Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Taha Y. Taha & Irene P. Chen & Jennifer M. Hayashi & Takako Tabata & Keith Walcott & Gabriella R. Kimmerly & Abdullah M. Syed & Alison Ciling & Rahul K. Suryawanshi & Hannah S. Martin & Bryan H. Bach , 2023. "Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Prakash Kharel & Marta Fay & Ekaterina V. Manasova & Paul J. Anderson & Alexander V. Kurkin & Junjie U. Guo & Pavel Ivanov, 2023. "Stress promotes RNA G-quadruplex folding in human cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Christine E. Peters & Ursula Schulze-Gahmen & Manon Eckhardt & Gwendolyn M. Jang & Jiewei Xu & Ernst H. Pulido & Conner Bardine & Charles S. Craik & Melanie Ott & Or Gozani & Kliment A. Verba & Ruth H, 2022. "Structure-function analysis of enterovirus protease 2A in complex with its essential host factor SETD3," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Scotland E. Farley & Jennifer E. Kyle & Hans C. Leier & Lisa M. Bramer & Jules B. Weinstein & Timothy A. Bates & Joon-Yong Lee & Thomas O. Metz & Carsten Schultz & Fikadu G. Tafesse, 2022. "A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Andrea Fontana & Francesca Vercellone & Mattia Conte & Mario Nicodemi, 2024. "Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Yuwei Zhang & Jieyu Zhao & Xiaona Chen & Yulong Qiao & Jinjin Kang & Xiaofan Guo & Feng Yang & Kaixin Lyu & Yiliang Ding & Yu Zhao & Hao Sun & Chun-Kit Kwok & Huating Wang, 2024. "DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m6A reader YTHDF1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Siwen Long & Mykhailo Guzyk & Laura Perez Vidakovics & Xiao Han & Renhua Sun & Megan Wang & Marc D. Panas & Egon Urgard & Jonathan M. Coquet & Andres Merits & Adnane Achour & Gerald M. McInerney, 2024. "SARS-CoV-2 N protein recruits G3BP to double membrane vesicles to promote translation of viral mRNAs," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Haofeng Wang & Qi Yang & Xiaoce Liu & Zili Xu & Maolin Shao & Dongxu Li & Yinkai Duan & Jielin Tang & Xianqiang Yu & Yumin Zhang & Aihua Hao & Yajie Wang & Jie Chen & Chenghao Zhu & Luke Guddat & Hong, 2023. "Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Ayan Chatterjee & Robin Walters & Zohair Shafi & Omair Shafi Ahmed & Michael Sebek & Deisy Gysi & Rose Yu & Tina Eliassi-Rad & Albert-László Barabási & Giulia Menichetti, 2023. "Improving the generalizability of protein-ligand binding predictions with AI-Bind," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Maria Di Girolamo & Gaia Fabrizio, 2018. "The ADP-Ribosyl-Transferases Diphtheria Toxin-Like (ARTDs) Family: An Overview," Challenges, MDPI, vol. 9(1), pages 1-24, May.
    14. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Shuting Yan & Qiyao Zhu & Swati Jain & Tamar Schlick, 2022. "Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Xiaopan Gao & Huabin Tian & Kaixiang Zhu & Qing Li & Wei Hao & Linyue Wang & Bo Qin & Hongyu Deng & Sheng Cui, 2022. "Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Thomas Kruse & Caroline Benz & Dimitriya H. Garvanska & Richard Lindqvist & Filip Mihalic & Fabian Coscia & Raviteja Inturi & Ahmed Sayadi & Leandro Simonetti & Emma Nilsson & Muhammad Ali & Johanna K, 2021. "Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. Nell Saunders & Blandine Monel & Nadège Cayet & Lorenzo Archetti & Hugo Moreno & Alexandre Jeanne & Agathe Marguier & Julian Buchrieser & Timothy Wai & Olivier Schwartz & Mathieu Fréchin, 2024. "Dynamic label-free analysis of SARS-CoV-2 infection reveals virus-induced subcellular remodeling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Filip Mihalič & Leandro Simonetti & Girolamo Giudice & Marie Rubin Sander & Richard Lindqvist & Marie Berit Akpiroro Peters & Caroline Benz & Eszter Kassa & Dilip Badgujar & Raviteja Inturi & Muhammad, 2023. "Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Hanbaek Lyu & Yacoub H. Kureh & Joshua Vendrow & Mason A. Porter, 2024. "Learning low-rank latent mesoscale structures in networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27431-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.