IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31238-y.html
   My bibliography  Save this article

Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer

Author

Listed:
  • Joyce V. Lee

    (University of California
    University of California)

  • Filomena Housley

    (University of California
    University of California)

  • Christina Yau

    (Buck Institute for Research on Aging
    University of California)

  • Rachel Nakagawa

    (University of California
    University of California)

  • Juliane Winkler

    (University of California
    University of California)

  • Johanna M. Anttila

    (University of Helsinki)

  • Pauliina M. Munne

    (University of Helsinki)

  • Mariel Savelius

    (University of Helsinki)

  • Kathleen E. Houlahan

    (Stanford University School of Medicine)

  • Daniel Mark

    (University of California
    University of California)

  • Golzar Hemmati

    (University of California
    University of California)

  • Grace A. Hernandez

    (University of California
    University of California)

  • Yibing Zhang

    (University of California
    University of California)

  • Susan Samson

    (University of California
    Breast Science Advocacy Core, UCSF Breast Oncology Program)

  • Carole Baas

    (Alamo Breast Cancer Foundation)

  • Marleen Kok

    (Department of Medical Oncology, Netherlands Cancer Institute
    Department of Tumor Biology & Immunology, Netherlands Cancer Institute)

  • Laura J. Esserman

    (University of California
    University of California
    University of California)

  • Laura J. ‘t Veer

    (University of California
    University of California)

  • Hope S. Rugo

    (University of California
    University of California)

  • Christina Curtis

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Juha Klefström

    (University of Helsinki)

  • Mehrdad Matloubian

    (University of California)

  • Andrei Goga

    (University of California
    University of California
    University of California)

Abstract

Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.

Suggested Citation

  • Joyce V. Lee & Filomena Housley & Christina Yau & Rachel Nakagawa & Juliane Winkler & Johanna M. Anttila & Pauliina M. Munne & Mariel Savelius & Kathleen E. Houlahan & Daniel Mark & Golzar Hemmati & G, 2022. "Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31238-y
    DOI: 10.1038/s41467-022-31238-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31238-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31238-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heidi M. Haikala & Johanna M. Anttila & Elsa Marques & Tiina Raatikainen & Mette Ilander & Henna Hakanen & Hanna Ala-Hongisto & Mariel Savelius & Diego Balboa & Bjoern Eyss & Vilja Eskelinen & Pauliin, 2019. "Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    2. Sean T. Bailey & Aleisha M. Smith & Jordan Kardos & Sara E. Wobker & Harper L. Wilson & Bhavani Krishnan & Ryoichi Saito & Hyo Jin Lee & Jing Zhang & Samuel C. Eaton & Lindsay A. Williams & Ujjawal Ma, 2017. "MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    3. Christina Curtis & Sohrab P. Shah & Suet-Feung Chin & Gulisa Turashvili & Oscar M. Rueda & Mark J. Dunning & Doug Speed & Andy G. Lynch & Shamith Samarajiwa & Yinyin Yuan & Stefan Gräf & Gavin Ha & Gh, 2012. "The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups," Nature, Nature, vol. 486(7403), pages 346-352, June.
    4. Sanjeev Mariathasan & Shannon J. Turley & Dorothee Nickles & Alessandra Castiglioni & Kobe Yuen & Yulei Wang & Edward E. Kadel III & Hartmut Koeppen & Jillian L. Astarita & Rafael Cubas & Suchit Jhunj, 2018. "TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells," Nature, Nature, vol. 554(7693), pages 544-548, February.
    5. Stephen-John Sammut & Mireia Crispin-Ortuzar & Suet-Feung Chin & Elena Provenzano & Helen A. Bardwell & Wenxin Ma & Wei Cope & Ali Dariush & Sarah-Jane Dawson & Jean E. Abraham & Janet Dunn & Louise H, 2022. "Multi-omic machine learning predictor of breast cancer therapy response," Nature, Nature, vol. 601(7894), pages 623-629, January.
    6. Devon A. Lawson & Nirav R. Bhakta & Kai Kessenbrock & Karin D. Prummel & Ying Yu & Ken Takai & Alicia Zhou & Henok Eyob & Sanjeev Balakrishnan & Chih-Yang Wang & Paul Yaswen & Andrei Goga & Zena Werb, 2015. "Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells," Nature, Nature, vol. 526(7571), pages 131-135, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin Y. C. Lee & Bethany C. Kennedy & Nathan Richoz & Isaac Dean & Zewen K. Tuong & Fabrina Gaspal & Zhi Li & Claire Willis & Tetsuo Hasegawa & Sarah K. Whiteside & David A. Posner & Gianluca Carless, 2024. "Tumour-retained activated CCR7+ dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Christel F. A. Ramirez & Daniel Taranto & Masami Ando-Kuri & Marnix H. P. Groot & Efi Tsouri & Zhijie Huang & Daniel Groot & Roelof J. C. Kluin & Daan J. Kloosterman & Joanne Verheij & Jing Xu & Seren, 2024. "Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Laura Lorenzo-Sanz & Marta Lopez-Cerda & Victoria da Silva-Diz & Marta H. Artés & Sandra Llop & Rosa M. Penin & Josep Oriol Bermejo & Eva Gonzalez-Suarez & Manel Esteller & Francesc Viñals & Enrique E, 2024. "Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleix Prat & Fara Brasó-Maristany & Olga Martínez-Sáez & Esther Sanfeliu & Youli Xia & Meritxell Bellet & Patricia Galván & Débora Martínez & Tomás Pascual & Mercedes Marín-Aguilera & Anna Rodríguez &, 2023. "Circulating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Hong Yuen Wong & Quanhu Sheng & Amanda B. Hesterberg & Sarah Croessmann & Brenda L. Rios & Khem Giri & Jorgen Jackson & Adam X. Miranda & Evan Watkins & Kerry R. Schaffer & Meredith Donahue & Elizabet, 2022. "Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Mike B. Barnkob & Yale S. Michaels & Violaine André & Philip S. Macklin & Uzi Gileadi & Salvatore Valvo & Margarida Rei & Corinna Kulicke & Ji-Li Chen & Vitul Jain & Victoria K. Woodcock & Huw Colin-Y, 2024. "Semaphorin 3A causes immune suppression by inducing cytoskeletal paralysis in tumour-specific CD8+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Feng Xie & Xiaoxue Zhou & Peng Su & Heyu Li & Yifei Tu & Jinjin Du & Chen Pan & Xiang Wei & Min Zheng & Ke Jin & Liyan Miao & Chao Wang & Xuli Meng & Hans Dam & Peter Dijke & Long Zhang & Fangfang Zho, 2022. "Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Hugh Chen & Scott M. Lundberg & Su-In Lee, 2022. "Explaining a series of models by propagating Shapley values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Guo Li & Saranya Srinivasan & Liwen Wang & Chaoyu Ma & Kai Guo & Wenhao Xiao & Wei Liao & Shruti Mishra & Xin Zhang & Yuanzheng Qiu & Qianjin Lu & Yong Liu & Nu Zhang, 2022. "TGF-β-dependent lymphoid tissue residency of stem-like T cells limits response to tumor vaccine," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Adam C. Weiner & Marc J. Williams & Hongyu Shi & Ignacio Vázquez-García & Sohrab Salehi & Nicole Rusk & Samuel Aparicio & Sohrab P. Shah & Andrew McPherson, 2024. "Inferring replication timing and proliferation dynamics from single-cell DNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Marco, Nicholas & Şentürk, Damla & Jeste, Shafali & DiStefano, Charlotte C. & Dickinson, Abigail & Telesca, Donatello, 2024. "Flexible regularized estimation in high-dimensional mixed membership models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    11. Camilla Tombari & Alessandro Zannini & Rebecca Bertolio & Silvia Pedretti & Matteo Audano & Luca Triboli & Valeria Cancila & Davide Vacca & Manuel Caputo & Sara Donzelli & Ilenia Segatto & Simone Vodr, 2023. "Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    12. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Han Luo & Xuyang Xia & Li-Bin Huang & Hyunsu An & Minyuan Cao & Gyeong Dae Kim & Hai-Ning Chen & Wei-Han Zhang & Yang Shu & Xiangyu Kong & Zhixiang Ren & Pei-Heng Li & Yang Liu & Huairong Tang & Rongh, 2022. "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Wei Cheng & Hao-Long Li & Shao-Yan Xi & Xiao-Feng Zhang & Yun Zhu & Le Xing & Yan-Xuan Mo & Mei-Mei Li & Fan-En Kong & Wen-Jie Zhu & Xiao-Gang Chen & Hui-Qing Cui & Zhi-Ming Cao & Yuan-Feng Gong & Yun, 2021. "Growth differentiation factor 1-induced tumour plasticity provides a therapeutic window for immunotherapy in hepatocellular carcinoma," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    15. Lei-Jie Dai & Ding Ma & Yu-Zheng Xu & Ming Li & Yu-Wei Li & Yi Xiao & Xi Jin & Song-Yang Wu & Ya-Xin Zhao & Han Wang & Wen-Tao Yang & Yi-Zhou Jiang & Zhi-Ming Shao, 2023. "Molecular features and clinical implications of the heterogeneity in Chinese patients with HER2-low breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Ha-Linh Nguyen & Tatjana Geukens & Marion Maetens & Samuel Aparicio & Ayse Bassez & Ake Borg & Jane Brock & Annegien Broeks & Carlos Caldas & Fatima Cardoso & Maxim Schepper & Mauro Delorenzi & Caroli, 2023. "Obesity-associated changes in molecular biology of primary breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Mattia Rediti & Aranzazu Fernandez-Martinez & David Venet & Françoise Rothé & Katherine A. Hoadley & Joel S. Parker & Baljit Singh & Jordan D. Campbell & Karla V. Ballman & David W. Hillman & Eric P. , 2023. "Immunological and clinicopathological features predict HER2-positive breast cancer prognosis in the neoadjuvant NeoALTTO and CALGB 40601 randomized trials," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Yael Aylon & Noa Furth & Giuseppe Mallel & Gilgi Friedlander & Nishanth Belugali Nataraj & Meng Dong & Ori Hassin & Rawan Zoabi & Benjamin Cohen & Vanessa Drendel & Tomer Meir Salame & Saptaparna Mukh, 2022. "Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    19. Jingjing Qi & Hongxiang Sun & Yao Zhang & Zhengting Wang & Zhenzhen Xun & Ziyi Li & Xinyu Ding & Rujuan Bao & Liwen Hong & Wenqing Jia & Fei Fang & Hongzhi Liu & Lei Chen & Jie Zhong & Duowu Zou & Lia, 2022. "Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    20. S. Mouron & M. J. Bueno & A. Lluch & L. Manso & I. Calvo & J. Cortes & J. A. Garcia-Saenz & M. Gil-Gil & N. Martinez-Janez & J. V. Apala & E. Caleiras & Pilar Ximénez-Embún & J. Muñoz & L. Gonzalez-Co, 2022. "Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31238-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.