IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v192y2024ics0167947323002177.html
   My bibliography  Save this article

Hierarchical false discovery rate control for high-dimensional survival analysis with interactions

Author

Listed:
  • Liang, Weijuan
  • Zhang, Qingzhao
  • Ma, Shuangge

Abstract

With the development of data collection techniques, analysis with a survival response and high-dimensional covariates has become routine. Here we consider an interaction model, which includes a set of low-dimensional covariates, a set of high-dimensional covariates, and their interactions. This model has been motivated by gene-environment (G-E) interaction analysis, where the E variables have a low dimension, and the G variables have a high dimension. For such a model, there has been extensive research on estimation and variable selection. Comparatively, inference studies with a valid false discovery rate (FDR) control have been very limited. The existing high-dimensional inference tools cannot be directly applied to interaction models, as interactions and main effects are not “equal”. In this article, for high-dimensional survival analysis with interactions, we model survival using the Accelerated Failure Time (AFT) model and adopt a “weighted least squares + debiased Lasso” approach for estimation and selection. A hierarchical FDR control approach is developed for inference and respect of the “main effects, interactions” hierarchy. The asymptotic distribution properties of the debiased Lasso estimators are rigorously established. Simulation demonstrates the satisfactory performance of the proposed approach, and the analysis of a breast cancer dataset further establishes its practical utility.

Suggested Citation

  • Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002177
    DOI: 10.1016/j.csda.2023.107906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323002177
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daoji Li & Yinfei Kong & Yingying Fan & Jinchi Lv, 2022. "High-Dimensional Interaction Detection With False Sign Rate Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1234-1245, June.
    2. Mengyun Wu & Qingzhao Zhang & Shuangge Ma, 2020. "Structured gene‐environment interaction analysis," Biometrics, The International Biometric Society, vol. 76(1), pages 23-35, March.
    3. Jixiong Wang & Ashish Patel & James M.S. Wason & Paul J. Newcombe, 2022. "Two‐stage penalized regression screening to detect biomarker–treatment interactions in randomized clinical trials," Biometrics, The International Biometric Society, vol. 78(1), pages 141-150, March.
    4. Max Grazier G'Sell & Stefan Wager & Alexandra Chouldechova & Robert Tibshirani, 2016. "Sequential selection procedures and false discovery rate control," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 423-444, March.
    5. Jie Ren & Fei Zhou & Xiaoxi Li & Shuangge Ma & Yu Jiang & Cen Wu, 2023. "Robust Bayesian variable selection for gene–environment interactions," Biometrics, The International Biometric Society, vol. 79(2), pages 684-694, June.
    6. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    7. Christina Curtis & Sohrab P. Shah & Suet-Feung Chin & Gulisa Turashvili & Oscar M. Rueda & Mark J. Dunning & Doug Speed & Andy G. Lynch & Shamith Samarajiwa & Yinyin Yuan & Stefan Gräf & Gavin Ha & Gh, 2012. "The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups," Nature, Nature, vol. 486(7403), pages 346-352, June.
    8. Chenguang Dai & Buyu Lin & Xin Xing & Jun S. Liu, 2023. "Rejoinder: A Scale-free Approach for False Discovery Rate Control in Generalized Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1590-1594, July.
    9. Sai Li & Yisha Yao & Cun-Hui Zhang, 2023. "Comments on “A Scale-Free Approach for False Discovery Rate Control in Generalized Linear Models”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1586-1589, July.
    10. Kerui Wu & Jiamei Feng & Feng Lyu & Fei Xing & Sambad Sharma & Yin Liu & Shih-Ying Wu & Dan Zhao & Abhishek Tyagi & Ravindra Pramod Deshpande & Xinhong Pei & Marco Gabril Ruiz & Hiroyuki Takahashi & S, 2021. "Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    11. Yaqing Xu & Mengyun Wu & Shuangge Ma, 2022. "Multidimensional molecular measurements–environment interaction analysis for disease outcomes," Biometrics, The International Biometric Society, vol. 78(4), pages 1542-1554, December.
    12. Berti, Patrizia & Rigo, Pietro, 2002. "A uniform limit theorem for predictive distributions," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 113-120, January.
    13. Oscar M. Rueda & Stephen-John Sammut & Jose A. Seoane & Suet-Feung Chin & Jennifer L. Caswell-Jin & Maurizio Callari & Rajbir Batra & Bernard Pereira & Alejandra Bruna & H. Raza Ali & Elena Provenzano, 2019. "Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups," Nature, Nature, vol. 567(7748), pages 399-404, March.
    14. Chenguang Dai & Buyu Lin & Xin Xing & Jun S. Liu, 2023. "A Scale-Free Approach for False Discovery Rate Control in Generalized Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1551-1565, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Mouron & M. J. Bueno & A. Lluch & L. Manso & I. Calvo & J. Cortes & J. A. Garcia-Saenz & M. Gil-Gil & N. Martinez-Janez & J. V. Apala & E. Caleiras & Pilar Ximénez-Embún & J. Muñoz & L. Gonzalez-Co, 2022. "Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Isabel Tundidor & Marta Seijo-Vila & Sandra Blasco-Benito & María Rubert-Hernández & Sandra Adámez & Clara Andradas & Sara Manzano & Isabel Álvarez-López & Cristina Sarasqueta & María Villa-Morales & , 2023. "Identification of fatty acid amide hydrolase as a metastasis suppressor in breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Aleix Prat & Fara Brasó-Maristany & Olga Martínez-Sáez & Esther Sanfeliu & Youli Xia & Meritxell Bellet & Patricia Galván & Débora Martínez & Tomás Pascual & Mercedes Marín-Aguilera & Anna Rodríguez &, 2023. "Circulating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. X. Jessie Jeng & Huimin Peng & Wenbin Lu, 2021. "Model Selection With Mixed Variables on the Lasso Path," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 170-184, May.
    5. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    6. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    7. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    8. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    9. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    10. Hugh Chen & Scott M. Lundberg & Su-In Lee, 2022. "Explaining a series of models by propagating Shapley values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    12. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    13. Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    14. Xu Zhao & Zhongxian Zhang & Weihu Cheng & Pengyue Zhang, 2019. "A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    15. Adam C. Weiner & Marc J. Williams & Hongyu Shi & Ignacio Vázquez-García & Sohrab Salehi & Nicole Rusk & Samuel Aparicio & Sohrab P. Shah & Andrew McPherson, 2024. "Inferring replication timing and proliferation dynamics from single-cell DNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Marco, Nicholas & Şentürk, Damla & Jeste, Shafali & DiStefano, Charlotte C. & Dickinson, Abigail & Telesca, Donatello, 2024. "Flexible regularized estimation in high-dimensional mixed membership models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    17. Camilla Tombari & Alessandro Zannini & Rebecca Bertolio & Silvia Pedretti & Matteo Audano & Luca Triboli & Valeria Cancila & Davide Vacca & Manuel Caputo & Sara Donzelli & Ilenia Segatto & Simone Vodr, 2023. "Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    18. Wenceslao González Manteiga & Cédric Heuchenne & César Sánchez Sellero & Alessandro Beretta, 2020. "Goodness-of-fit tests for censored regression based on artificial data points," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 599-615, June.
    19. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    20. Uña-Álvarez, Jacobo de & González-Manteiga, Wenceslao, 1999. "Strong consistency under proportional censorship when covariables are present," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 283-292, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.