IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31058-0.html
   My bibliography  Save this article

Observation of supersymmetry and its spontaneous breaking in a trapped ion quantum simulator

Author

Listed:
  • M.-L. Cai

    (Tsinghua University
    HYQ Co., Ltd)

  • Y.-K. Wu

    (Tsinghua University)

  • Q.-X. Mei

    (Tsinghua University)

  • W.-D. Zhao

    (Tsinghua University)

  • Y. Jiang

    (Tsinghua University)

  • L. Yao

    (Tsinghua University
    HYQ Co., Ltd)

  • L. He

    (Tsinghua University)

  • Z.-C. Zhou

    (Tsinghua University
    Beijing Academy of Quantum Information Sciences)

  • L.-M. Duan

    (Tsinghua University)

Abstract

Supersymmetry (SUSY) helps solve the hierarchy problem in high-energy physics and provides a natural groundwork for unifying gravity with other fundamental interactions. While being one of the most promising frameworks for theories beyond the Standard Model, its direct experimental evidence in nature still remains to be discovered. Here we report experimental realization of a supersymmetric quantum mechanics (SUSY QM) model, a reduction of the SUSY quantum field theory for studying its fundamental properties, using a trapped ion quantum simulator. We demonstrate the energy degeneracy caused by SUSY in this model and the spontaneous SUSY breaking. By a partial quantum state tomography of the spin-phonon coupled system, we explicitly measure the supercharge of the degenerate ground states, which are superpositions of the bosonic and the fermionic states. Our work demonstrates the trapped-ion quantum simulator as an economic yet powerful platform to study versatile physics in a single well-controlled system.

Suggested Citation

  • M.-L. Cai & Y.-K. Wu & Q.-X. Mei & W.-D. Zhao & Y. Jiang & L. Yao & L. He & Z.-C. Zhou & L.-M. Duan, 2022. "Observation of supersymmetry and its spontaneous breaking in a trapped ion quantum simulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31058-0
    DOI: 10.1038/s41467-022-31058-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31058-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31058-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Gerritsma & G. Kirchmair & F. Zähringer & E. Solano & R. Blatt & C. F. Roos, 2010. "Quantum simulation of the Dirac equation," Nature, Nature, vol. 463(7277), pages 68-71, January.
    2. C. Kokail & C. Maier & R. van Bijnen & T. Brydges & M. K. Joshi & P. Jurcevic & C. A. Muschik & P. Silvi & R. Blatt & C. F. Roos & P. Zoller, 2019. "Self-verifying variational quantum simulation of lattice models," Nature, Nature, vol. 569(7756), pages 355-360, May.
    3. Pengfei Wang & Chun-Yang Luan & Mu Qiao & Mark Um & Junhua Zhang & Ye Wang & Xiao Yuan & Mile Gu & Jingning Zhang & Kihwan Kim, 2021. "Single ion qubit with estimated coherence time exceeding one hour," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Grigory E. Astrakharchik & Luis A. Peña Ardila & Krzysztof Jachymski & Antonio Negretti, 2023. "Many-body bound states and induced interactions of charged impurities in a bosonic bath," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. M. Akhtar & F. Bonus & F. R. Lebrun-Gallagher & N. I. Johnson & M. Siegele-Brown & S. Hong & S. J. Hile & S. A. Kulmiya & S. Weidt & W. K. Hensinger, 2023. "A high-fidelity quantum matter-link between ion-trap microchip modules," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Zhang, Pingrui & Jiang, Xiaoyun & Jia, Junqing, 2024. "Improved uniform error estimates for the two-dimensional nonlinear space fractional Dirac equation with small potentials over long-time dynamics," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    5. Pengfei Wang & Hyukjoon Kwon & Chun-Yang Luan & Wentao Chen & Mu Qiao & Zinan Zhou & Kaizhao Wang & M. S. Kim & Kihwan Kim, 2024. "Snapshotting quantum dynamics at multiple time points," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    7. Haonan Wang & Heejun Kim & Duanfei Dong & Keisuke Shinokita & Kenji Watanabe & Takashi Taniguchi & Kazunari Matsuda, 2024. "Quantum coherence and interference of a single moiré exciton in nano-fabricated twisted monolayer semiconductor heterobilayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Yasar Y. Atas & Jinglei Zhang & Randy Lewis & Amin Jahanpour & Jan F. Haase & Christine A. Muschik, 2021. "SU(2) hadrons on a quantum computer via a variational approach," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Giacomo Torlai & Christopher J. Wood & Atithi Acharya & Giuseppe Carleo & Juan Carrasquilla & Leandro Aolita, 2023. "Quantum process tomography with unsupervised learning and tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Haokun Luo & Yunxuan Wei & Georgios G. Pyrialakos & Mercedeh Khajavikhan & Demetrios N. Christodoulides, 2024. "Guiding charged particles in vacuum via Lagrange points," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Joonhyuk Kwon & William J. Setzer & Michael Gehl & Nicholas Karl & Jay Van Der Wall & Ryan Law & Matthew G. Blain & Daniel Stick & Hayden J. McGuinness, 2024. "Multi-site integrated optical addressing of trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31058-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.