IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v463y2010i7277d10.1038_nature08688.html
   My bibliography  Save this article

Quantum simulation of the Dirac equation

Author

Listed:
  • R. Gerritsma

    (Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
    Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria)

  • G. Kirchmair

    (Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
    Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria)

  • F. Zähringer

    (Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
    Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria)

  • E. Solano

    (Universidad del País Vasco - Euskal Herriko Unibertsitatea, Apartado 644, 48080 Bilbao, Spain
    IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain)

  • R. Blatt

    (Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
    Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria)

  • C. F. Roos

    (Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
    Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria)

Abstract

Quantum particles aquiver The Dirac equation, proposed by Paul Dirac in 1928 to describe the behaviour of relativistic quantum particles, merges quantum mechanics with special relativity. A number of peculiar effects emerge from the equation, including a rapid quivering motion or 'Zitterbewegung', well established in theory but difficult to observe in real particles. Christian Roos and colleagues have developed a proof-of-principle quantum simulation of the Dirac equation using a single trapped ion set to behave as a free relativistic quantum particle. The high level of control of trapped-ion experimental parameters in this system makes it possible to simulate and study Zitterbewegung and other textbook examples of relativistic quantum physics.

Suggested Citation

  • R. Gerritsma & G. Kirchmair & F. Zähringer & E. Solano & R. Blatt & C. F. Roos, 2010. "Quantum simulation of the Dirac equation," Nature, Nature, vol. 463(7277), pages 68-71, January.
  • Handle: RePEc:nat:nature:v:463:y:2010:i:7277:d:10.1038_nature08688
    DOI: 10.1038/nature08688
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08688
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. M.-L. Cai & Y.-K. Wu & Q.-X. Mei & W.-D. Zhao & Y. Jiang & L. Yao & L. He & Z.-C. Zhou & L.-M. Duan, 2022. "Observation of supersymmetry and its spontaneous breaking in a trapped ion quantum simulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Zhang, Pingrui & Jiang, Xiaoyun & Jia, Junqing, 2024. "Improved uniform error estimates for the two-dimensional nonlinear space fractional Dirac equation with small potentials over long-time dynamics," Applied Mathematics and Computation, Elsevier, vol. 466(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:463:y:2010:i:7277:d:10.1038_nature08688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.