IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30858-8.html
   My bibliography  Save this article

NANOG initiates epiblast fate through the coordination of pluripotency genes expression

Author

Listed:
  • Nicolas Allègre

    (Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine)

  • Sabine Chauveau

    (Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine)

  • Cynthia Dennis

    (Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine)

  • Yoan Renaud

    (Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine
    Byonet)

  • Dimitri Meistermann

    (Université de Nantes, CHU Nantes, INSERM
    Université de Nantes, CNRS, LS2N)

  • Lorena Valverde Estrella

    (Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine)

  • Pierre Pouchin

    (Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine)

  • Michel Cohen-Tannoudji

    (Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology)

  • Laurent David

    (Université de Nantes, CHU Nantes, INSERM
    Université de Nantes, CHU Nantes, INSERM, CNRS, UMS Biocore)

  • Claire Chazaud

    (Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine)

Abstract

The epiblast is the source of all mammalian embryonic tissues and of pluripotent embryonic stem cells. It differentiates alongside the primitive endoderm in a “salt and pepper” pattern from inner cell mass (ICM) progenitors during the preimplantation stages through the activity of NANOG, GATA6 and the FGF pathway. When and how epiblast lineage specification is initiated is still unclear. Here, we show that the coordinated expression of pluripotency markers defines epiblast identity. Conversely, ICM progenitor cells display random cell-to-cell variability in expression of various pluripotency markers, remarkably dissimilar from the epiblast signature and independently from NANOG, GATA6 and FGF activities. Coordination of pluripotency markers expression fails in Nanog and Gata6 double KO (DKO) embryos. Collectively, our data suggest that NANOG triggers epiblast specification by ensuring the coordinated expression of pluripotency markers in a subset of cells, implying a stochastic mechanism. These features are likely conserved, as suggested by analysis of human embryos.

Suggested Citation

  • Nicolas Allègre & Sabine Chauveau & Cynthia Dennis & Yoan Renaud & Dimitri Meistermann & Lorena Valverde Estrella & Pierre Pouchin & Michel Cohen-Tannoudji & Laurent David & Claire Chazaud, 2022. "NANOG initiates epiblast fate through the coordination of pluripotency genes expression," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30858-8
    DOI: 10.1038/s41467-022-30858-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30858-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30858-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian Chambers & Jose Silva & Douglas Colby & Jennifer Nichols & Bianca Nijmeijer & Morag Robertson & Jan Vrana & Ken Jones & Lars Grotewold & Austin Smith, 2007. "Nanog safeguards pluripotency and mediates germline development," Nature, Nature, vol. 450(7173), pages 1230-1234, December.
    2. Sabine C Fischer & Elena Corujo-Simon & Joaquin Lilao-Garzon & Ernst H K Stelzer & Silvia Muñoz-Descalzo, 2020. "The transition from local to global patterns governs the differentiation of mouse blastocysts," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-29, May.
    3. Claudia Gerri & Afshan McCarthy & Gregorio Alanis-Lobato & Andrej Demtschenko & Alexandre Bruneau & Sophie Loubersac & Norah M. E. Fogarty & Daniel Hampshire & Kay Elder & Phil Snell & Leila Christie , 2020. "Initiation of a conserved trophectoderm program in human, cow and mouse embryos," Nature, Nature, vol. 587(7834), pages 443-447, November.
    4. Maria-Elena Torres-Padilla & David-Emlyn Parfitt & Tony Kouzarides & Magdalena Zernicka-Goetz, 2007. "Histone arginine methylation regulates pluripotency in the early mouse embryo," Nature, Nature, vol. 445(7124), pages 214-218, January.
    5. Victor Heurtier & Nick Owens & Inma Gonzalez & Florian Mueller & Caroline Proux & Damien Mornico & Philippe Clerc & Agnes Dubois & Pablo Navarro, 2019. "The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    6. Angélique Richard & Loïs Boullu & Ulysse Herbach & Arnaud Bonnafoux & Valérie Morin & Elodie Vallin & Anissa Guillemin & Nan Papili Gao & Rudiyanto Gunawan & Jérémie Cosette & Ophélie Arnaud & Jean-Ja, 2016. "Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process," PLOS Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    7. Yusuke Miyanari & Maria-Elena Torres-Padilla, 2012. "Control of ground-state pluripotency by allelic regulation of Nanog," Nature, Nature, vol. 483(7390), pages 470-473, March.
    8. Alessandro Fiorenzano & Emilia Pascale & Cristina D'Aniello & Dario Acampora & Cecilia Bassalert & Francesco Russo & Gennaro Andolfi & Mauro Biffoni & Federica Francescangeli & Ann Zeuner & Claudia An, 2016. "Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency," Nature Communications, Nature, vol. 7(1), pages 1-16, November.
    9. Sonja Nowotschin & Manu Setty & Ying-Yi Kuo & Vincent Liu & Vidur Garg & Roshan Sharma & Claire S. Simon & Nestor Saiz & Rui Gardner & Stéphane C. Boutet & Deanna M. Church & Pamela A. Hoodless & Anna, 2019. "The emergent landscape of the mouse gut endoderm at single-cell resolution," Nature, Nature, vol. 569(7756), pages 361-367, May.
    10. Néstor Saiz & Kiah M. Williams & Venkatraman E. Seshan & Anna-Katerina Hadjantonakis, 2016. "Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst," Nature Communications, Nature, vol. 7(1), pages 1-14, December.
    11. Sissy E. Wamaitha & Katarzyna J. Grybel & Gregorio Alanis-Lobato & Claudia Gerri & Sugako Ogushi & Afshan McCarthy & Shantha K. Mahadevaiah & Lyn Healy & Rebecca A. Lea & Miriam Molina-Arcas & Liani G, 2020. "IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gemma Noviello & Rutger A. F. Gjaltema & Edda G. Schulz, 2023. "CasTuner is a degron and CRISPR/Cas-based toolkit for analog tuning of endogenous gene expression," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Joyce J. Thompson & Daniel J. Lee & Apratim Mitra & Sarah Frail & Ryan K. Dale & Pedro P. Rocha, 2022. "Extensive co-binding and rapid redistribution of NANOG and GATA6 during emergence of divergent lineages," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Sabine C Fischer & Elena Corujo-Simon & Joaquin Lilao-Garzon & Ernst H K Stelzer & Silvia Muñoz-Descalzo, 2020. "The transition from local to global patterns governs the differentiation of mouse blastocysts," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-29, May.
    4. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Rohith Palli & Mukta G Palshikar & Juilee Thakar, 2019. "Executable pathway analysis using ensemble discrete-state modeling for large-scale data," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-21, September.
    6. Chen Dong & Shuhua Fu & Rowan M. Karvas & Brian Chew & Laura A. Fischer & Xiaoyun Xing & Jessica K. Harrison & Pooja Popli & Ramakrishna Kommagani & Ting Wang & Bo Zhang & Thorold W. Theunissen, 2022. "A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Ryan J. Smith & Hongpan Zhang & Shengen Shawn Hu & Theodora Yung & Roshane Francis & Lilian Lee & Mark W. Onaitis & Peter B. Dirks & Chongzhi Zang & Tae-Hee Kim, 2022. "Single-cell chromatin profiling of the primitive gut tube reveals regulatory dynamics underlying lineage fate decisions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Jeremy Lotto & Rebecca Cullum & Sibyl Drissler & Martin Arostegui & Victoria C. Garside & Bettina M. Fuglerud & Makenna Clement-Ranney & Avinash Thakur & T. Michael Underhill & Pamela A. Hoodless, 2023. "Cell diversity and plasticity during atrioventricular heart valve EMTs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Ran Wang & Xianfa Yang & Jiehui Chen & Lin Zhang & Jonathan A. Griffiths & Guizhong Cui & Yingying Chen & Yun Qian & Guangdun Peng & Jinsong Li & Liantang Wang & John C. Marioni & Patrick P. L. Tam & , 2023. "Time space and single-cell resolved tissue lineage trajectories and laterality of body plan at gastrulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    11. Rowan D Brackston & Eszter Lakatos & Michael P H Stumpf, 2018. "Transition state characteristics during cell differentiation," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-24, September.
    12. Charles Petitpré & Louis Faure & Phoebe Uhl & Paula Fontanet & Iva Filova & Gabriela Pavlinkova & Igor Adameyko & Saida Hadjab & Francois Lallemend, 2022. "Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Thomas Legier & Diane Rattier & Jack Llewellyn & Thomas Vannier & Benoit Sorre & Flavio Maina & Rosanna Dono, 2023. "Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-β protein sensing," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Luca Pagliaroli & Patrizia Porazzi & Alyxandra T. Curtis & Chiara Scopa & Harald M. M. Mikkers & Christian Freund & Lucia Daxinger & Sandra Deliard & Sarah A. Welsh & Sarah Offley & Connor A. Ott & Br, 2021. "Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    15. Zeyang Wang & Rui Fan & Angela Russo & Filippo M. Cernilogar & Alexander Nuber & Silvia Schirge & Irina Shcherbakova & Iva Dzhilyanova & Enes Ugur & Tobias Anton & Lisa Richter & Heinrich Leonhardt & , 2022. "Dominant role of DNA methylation over H3K9me3 for IAP silencing in endoderm," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Le Qin & Yuanbin Cui & Tingjie Yuan & Dongmei Chen & Ruocong Zhao & Shanglin Li & Zhiwu Jiang & Qiting Wu & Youguo Long & Suna Wang & Zhaoyang Tang & Huixia Pan & Xiaoping Li & Wei Wei & Jie Yang & Xu, 2022. "Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Mohammad Jaber & Ahmed Radwan & Netanel Loyfer & Mufeed Abdeen & Shulamit Sebban & Areej Khatib & Hazar Yassen & Thorsten Kolb & Marc Zapatka & Kirill Makedonski & Aurelie Ernst & Tommy Kaplan & Yosef, 2022. "Comparative parallel multi-omics analysis during the induction of pluripotent and trophectoderm states," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    18. Azelle Hawdon & Niall D. Geoghegan & Monika Mohenska & Anja Elsenhans & Charles Ferguson & Jose M. Polo & Robert G. Parton & Jennifer Zenker, 2023. "Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Jianlin Shao & Dong Xu & Sau-Na Tsai & Yifei Wang & Sai-Ming Ngai, 2009. "Computational Identification of Protein Methylation Sites through Bi-Profile Bayes Feature Extraction," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-7, March.
    20. Simon Andrews & Christel Krueger & Maravillas Mellado-Lopez & Myriam Hemberger & Wendy Dean & Vicente Perez-Garcia & Courtney W. Hanna, 2023. "Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30858-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.