IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30745-2.html
   My bibliography  Save this article

A modular spring-loaded actuator for mechanical activation of membrane proteins

Author

Listed:
  • A. Mills

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • N. Aissaoui

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • D. Maurel

    (Université de Montpellier, Institut de Génomique Fonctionnelle, INSERM, CNRS)

  • J. Elezgaray

    (CRPP, CNRS, UMR 5031, Université de Bordeaux)

  • F. Morvan

    (IBMM, Université de Montpellier, CNRS, ENSCM)

  • J. J. Vasseur

    (IBMM, Université de Montpellier, CNRS, ENSCM)

  • E. Margeat

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • R. B. Quast

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • J. Lai Kee-Him

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • N. Saint

    (PHYMEDEXP, Université de Montpellier, CNRS, INSERM)

  • C. Benistant

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • A. Nord

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • F. Pedaci

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

  • G. Bellot

    (Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS)

Abstract

How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells.

Suggested Citation

  • A. Mills & N. Aissaoui & D. Maurel & J. Elezgaray & F. Morvan & J. J. Vasseur & E. Margeat & R. B. Quast & J. Lai Kee-Him & N. Saint & C. Benistant & A. Nord & F. Pedaci & G. Bellot, 2022. "A modular spring-loaded actuator for mechanical activation of membrane proteins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30745-2
    DOI: 10.1038/s41467-022-30745-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30745-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30745-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yun Zhang & Chenghao Ge & Cheng Zhu & Khalid Salaita, 2014. "DNA-based digital tension probes reveal integrin forces during early cell adhesion," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    2. Anton Kuzyk & Yangyang Yang & Xiaoyang Duan & Simon Stoll & Alexander O. Govorov & Hiroshi Sugiyama & Masayuki Endo & Na Liu, 2016. "A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    3. Gwangrog Lee & Khadar Abdi & Yong Jiang & Peter Michaely & Vann Bennett & Piotr E. Marszalek, 2006. "Nanospring behaviour of ankyrin repeats," Nature, Nature, vol. 440(7081), pages 246-249, March.
    4. Shawn M. Douglas & Hendrik Dietz & Tim Liedl & Björn Högberg & Franziska Graf & William M. Shih, 2009. "Self-assembly of DNA into nanoscale three-dimensional shapes," Nature, Nature, vol. 459(7245), pages 414-418, May.
    5. Dennis W. Zhou & Marc A. Fernández-Yagüe & Elijah N. Holland & Andrés F. García & Nicolas S. Castro & Eric B. O’Neill & Jeroen Eyckmans & Christopher S. Chen & Jianping Fu & David D. Schlaepfer & Andr, 2021. "Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Nisha Arora & Jagadish P. Hazra & Sandip Roy & Gaurav K. Bhati & Sarika Gupta & K. P. Yogendran & Abhishek Chaudhuri & Amin Sagar & Sabyasachi Rakshit, 2024. "Emergence of slip-ideal-slip behavior in tip-links serve as force filters of sound in hearing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Martina F. Ober & Anna Baptist & Lea Wassermann & Amelie Heuer-Jungemann & Bert Nickel, 2022. "In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Jérôme R D Soiné & Christoph A Brand & Jonathan Stricker & Patrick W Oakes & Margaret L Gardel & Ulrich S Schwarz, 2015. "Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-16, March.
    5. Mitchell S. Wang & Yuesong Hu & Elisa E. Sanchez & Xihe Xie & Nathan H. Roy & Miguel Jesus & Benjamin Y. Winer & Elizabeth A. Zale & Weiyang Jin & Chirag Sachar & Joanne H. Lee & Yeonsun Hong & Minsoo, 2022. "Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Francis Schuknecht & Karol Kołątaj & Michael Steinberger & Tim Liedl & Theobald Lohmueller, 2023. "Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Chi Chen & Xingfei Wei & Molly F. Parsons & Jiajia Guo & James L. Banal & Yinong Zhao & Madelyn N. Scott & Gabriela S. Schlau-Cohen & Rigoberto Hernandez & Mark Bathe, 2022. "Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Arventh Velusamy & Radhika Sharma & Sk Aysha Rashid & Hiroaki Ogasawara & Khalid Salaita, 2024. "DNA mechanocapsules for programmable piconewton responsive drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Linlin Tang & Zhijin Tian & Jin Cheng & Yijing Zhang & Yongxiu Song & Yan Liu & Jinghao Wang & Pengfei Zhang & Yonggang Ke & Friedrich C. Simmel & Jie Song, 2023. "Circular single-stranded DNA as switchable vector for gene expression in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Le Luo & Swathi Manda & Yunjeong Park & Busra Demir & Jesse Sanchez & M. P. Anantram & Ersin Emre Oren & Ashwin Gopinath & Marco Rolandi, 2023. "DNA nanopores as artificial membrane channels for bioprotonics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Zhao Zhang & Zhaomeng Feng & Xiaowei Zhao & Dominique Jean & Zhiheng Yu & Edwin R. Chapman, 2023. "Functionalization and higher-order organization of liposomes with DNA nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Ioanna Smyrlaki & Ferenc Fördős & Iris Rocamonde-Lago & Yang Wang & Boxuan Shen & Antonio Lentini & Vincent C. Luca & Björn Reinius & Ana I. Teixeira & Björn Högberg, 2024. "Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Matthew R. Pawlak & Adam T. Smiley & Maria Paz Ramirez & Marcus D. Kelly & Ghaidan A. Shamsan & Sarah M. Anderson & Branden A. Smeester & David A. Largaespada & David J. Odde & Wendy R. Gordon, 2023. "RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Eva Bertosin & Christopher M. Maffeo & Thomas Drexler & Maximilian N. Honemann & Aleksei Aksimentiev & Hendrik Dietz, 2021. "A nanoscale reciprocating rotary mechanism with coordinated mobility control," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Myung Hyun Jo & Jing Li & Valentin Jaumouillé & Yuxin Hao & Jessica Coppola & Jiabin Yan & Clare M. Waterman & Timothy A. Springer & Taekjip Ha, 2022. "Single-molecule characterization of subtype-specific β1 integrin mechanics," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Jae Young Lee & Heeyuen Koh & Do-Nyun Kim, 2023. "A computational model for structural dynamics and reconfiguration of DNA assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Guang Hu & Wen-Yuan Qiu & Arnout Ceulemans, 2011. "A New Euler's Formula for DNA Polyhedra," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-6, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30745-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.