IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30631-x.html
   My bibliography  Save this article

Observation of novel topological states in hyperbolic lattices

Author

Listed:
  • Weixuan Zhang

    (Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology)

  • Hao Yuan

    (Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology)

  • Na Sun

    (Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology)

  • Houjun Sun

    (Beijing Key Laboratory of Millimeter wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology)

  • Xiangdong Zhang

    (Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology)

Abstract

The discovery of novel topological states has served as a major branch in physics and material sciences. To date, most of the established topological states have been employed in Euclidean systems. Recently, the experimental realization of the hyperbolic lattice, which is the regular tessellation in non-Euclidean space with a constant negative curvature, has attracted much attention. Here, we demonstrate both in theory and experiment that exotic topological states can exist in engineered hyperbolic lattices with unique properties compared to their Euclidean counterparts. Based on the extended Haldane model, the boundary-dominated first-order Chern edge state with a nontrivial real-space Chern number is achieved. Furthermore, we show that the fractal-like midgap higher-order zero modes appear in deformed hyperbolic lattices, and the number of zero modes increases exponentially with the lattice size. These novel topological states are observed in designed hyperbolic circuit networks by measuring site-resolved impedance responses and dynamics of voltage packets. Our findings suggest a useful platform to study topological phases beyond Euclidean space, and may have potential applications in the field of high-efficient topological devices, such as topological lasers, with enhanced edge responses.

Suggested Citation

  • Weixuan Zhang & Hao Yuan & Na Sun & Houjun Sun & Xiangdong Zhang, 2022. "Observation of novel topological states in hyperbolic lattices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30631-x
    DOI: 10.1038/s41467-022-30631-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30631-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30631-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Lohse & Christian Schweizer & Hannah M. Price & Oded Zilberberg & Immanuel Bloch, 2018. "Exploring 4D quantum Hall physics with a 2D topological charge pump," Nature, Nature, vol. 553(7686), pages 55-58, January.
    2. Nikita A. Olekhno & Egor I. Kretov & Andrei A. Stepanenko & Polina A. Ivanova & Vitaly V. Yaroshenko & Ekaterina M. Puhtina & Dmitry S. Filonov & Barbara Cappello & Ladislau Matekovits & Maxim A. Gorl, 2020. "Topological edge states of interacting photon pairs emulated in a topolectrical circuit," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. D.N. Sheng & Zheng-Cheng Gu & Kai Sun & L. Sheng, 2011. "Fractional quantum Hall effect in the absence of Landau levels," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    4. Oded Zilberberg & Sheng Huang & Jonathan Guglielmon & Mohan Wang & Kevin P. Chen & Yaacov E. Kraus & Mikael C. Rechtsman, 2018. "Photonic topological boundary pumping as a probe of 4D quantum Hall physics," Nature, Nature, vol. 553(7686), pages 59-62, January.
    5. Alicia J. Kollár & Mattias Fitzpatrick & Andrew A. Houck, 2019. "Hyperbolic lattices in circuit quantum electrodynamics," Nature, Nature, vol. 571(7763), pages 45-50, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaolu Chen & Zhe Zhang & Haoye Qin & Aleksi Bossart & Yihao Yang & Hongsheng Chen & Romain Fleury, 2024. "Anomalous and Chern topological waves in hyperbolic networks," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Weixuan Zhang & Hao Yuan & Haiteng Wang & Fengxiao Di & Na Sun & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2022. "Observation of Bloch oscillations dominated by effective anyonic particle statistics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Lei Chen & Fang Xie & Shouvik Sur & Haoyu Hu & Silke Paschen & Jennifer Cano & Qimiao Si, 2024. "Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Deyuan Zou & Tian Chen & Wenjing He & Jiacheng Bao & Ching Hua Lee & Houjun Sun & Xiangdong Zhang, 2021. "Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Wright, E.A.P. & Yoon, S. & Mendes, J.F.F. & Goltsev, A.V., 2021. "Topological phase transition in the periodically forced Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Zhao-Xian Chen & Yu-Gui Peng & Ze-Guo Chen & Yuan Liu & Peng Chen & Xue-Feng Zhu & Yan-Qing Lu, 2024. "Robust temporal adiabatic passage with perfect frequency conversion between detuned acoustic cavities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Petrov, Miroslav S. & Todorov, Todor D., 2021. "Properties of the multidimensional finite elements," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    13. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Melanie Swan & Renato P. Dos Santos & Frank Witte, 2022. "Quantum Matter Overview," J, MDPI, vol. 5(2), pages 1-23, April.
    15. Martin Claassen & Lede Xian & Dante M. Kennes & Angel Rubio, 2022. "Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Xiao-Wei Zhang & Chong Wang & Xiaoyu Liu & Yueyao Fan & Ting Cao & Di Xiao, 2024. "Polarization-driven band topology evolution in twisted MoTe2 and WSe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Lizhen Lu & Kun Ding & Emanuele Galiffi & Xikui Ma & Tianyu Dong & J. B. Pendry, 2021. "Revealing topology with transformation optics," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    18. Qiaolu Chen & Zhe Zhang & Haoye Qin & Aleksi Bossart & Yihao Yang & Hongsheng Chen & Romain Fleury, 2024. "Anomalous and Chern topological waves in hyperbolic networks," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Patrick M. Lenggenhager & Alexander Stegmaier & Lavi K. Upreti & Tobias Hofmann & Tobias Helbig & Achim Vollhardt & Martin Greiter & Ching Hua Lee & Stefan Imhof & Hauke Brand & Tobias Kießling & Igor, 2022. "Simulating hyperbolic space on a circuit board," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30631-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.