IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1380.html
   My bibliography  Save this article

Fractional quantum Hall effect in the absence of Landau levels

Author

Listed:
  • D.N. Sheng

    (California State University)

  • Zheng-Cheng Gu

    (Kavli Institute for Theoretical Physics, University of California)

  • Kai Sun

    (Condensed Matter Theory Center and Joint Quantum Institute, University of Maryland)

  • L. Sheng

    (Nanjing University)

Abstract

It is well known that the topological phenomena with fractional excitations, the fractional quantum Hall effect, will emerge when electrons move in Landau levels. Here we show the theoretical discovery of the fractional quantum Hall effect in the absence of Landau levels in an interacting fermion model. The non-interacting part of our Hamiltonian is the recently proposed topologically non-trivial flat-band model on a checkerboard lattice. In the presence of nearest-neighbouring repulsion, we find that at 1/3 filling, the Fermi-liquid state is unstable towards the fractional quantum Hall effect. At 1/5 filling, however, a next-nearest-neighbouring repulsion is needed for the occurrence of the 1/5 fractional quantum Hall effect when nearest-neighbouring repulsion is not too strong. We demonstrate the characteristic features of these novel states and determine the corresponding phase diagram.

Suggested Citation

  • D.N. Sheng & Zheng-Cheng Gu & Kai Sun & L. Sheng, 2011. "Fractional quantum Hall effect in the absence of Landau levels," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1380
    DOI: 10.1038/ncomms1380
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1380
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Claassen & Lede Xian & Dante M. Kennes & Angel Rubio, 2022. "Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Weixuan Zhang & Hao Yuan & Na Sun & Houjun Sun & Xiangdong Zhang, 2022. "Observation of novel topological states in hyperbolic lattices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.