IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33478-4.html
   My bibliography  Save this article

Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures

Author

Listed:
  • Nader Mostaan

    (Ludwig-Maximilians-Universität München
    Munich Center for Quantum Science and Technology (MCQST)
    CENOLI, Université Libre de Bruxelles, CP 231)

  • Fabian Grusdt

    (Ludwig-Maximilians-Universität München
    Munich Center for Quantum Science and Technology (MCQST))

  • Nathan Goldman

    (CENOLI, Université Libre de Bruxelles, CP 231)

Abstract

Exploring the interplay between topological band structures and tunable nonlinearities has become possible with the development of synthetic lattice systems. In this emerging field of nonlinear topological physics, an experiment revealed the quantized motion of solitons in Thouless pumps and suggested that this phenomenon was dictated by the Chern number of the band from which solitons emanate. Here, we elucidate the origin of this nonlinear topological effect, by showing that the motion of solitons is established by the quantized displacement of the underlying Wannier functions. Our general theoretical approach, which fully clarifies the central role of the Chern number in solitonic pumps, provides a framework for describing the topological transport of nonlinear excitations in a broad class of physical systems. Exploiting this interdisciplinarity, we introduce an interaction-induced topological pump for ultracold atomic mixtures, where solitons of impurity atoms experience a quantized drift resulting from genuine interaction processes with their environment.

Suggested Citation

  • Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33478-4
    DOI: 10.1038/s41467-022-33478-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33478-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33478-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Grusdt & N. Y. Yao & D. Abanin & M. Fleischhauer & E. Demler, 2016. "Interferometric measurements of many-body topological invariants using mobile impurities," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    2. Inbar Hotzen Grinberg & Mao Lin & Cameron Harris & Wladimir A. Benalcazar & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2020. "Robust temporal pumping in a magneto-mechanical topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Marius Jürgensen & Sebabrata Mukherjee & Mikael C. Rechtsman, 2021. "Quantized nonlinear Thouless pumping," Nature, Nature, vol. 596(7870), pages 63-67, August.
    4. Oded Zilberberg & Sheng Huang & Jonathan Guglielmon & Mohan Wang & Kevin P. Chen & Yaacov E. Kraus & Mikael C. Rechtsman, 2018. "Photonic topological boundary pumping as a probe of 4D quantum Hall physics," Nature, Nature, vol. 553(7686), pages 59-62, January.
    5. Kevin E. Strecker & Guthrie B. Partridge & Andrew G. Truscott & Randall G. Hulet, 2002. "Formation and propagation of matter-wave soliton trains," Nature, Nature, vol. 417(6885), pages 150-153, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Ke Sun & Zhong-Lei Shan & Zhen-Nan Tian & Qi-Dai Chen & Xu-Lin Zhang, 2024. "Two-dimensional non-Abelian Thouless pump," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Shi, Zeyun & Badshah, Fazal & Qin, Lu & Zhou, Yuan & Huang, Haibo & Zhang, Yong-Chang, 2023. "Spatially modulated control of pattern formation in a general nonlocal nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Malomed, Boris A. & Nascimento, V.A. & Adhikari, Sadhan K., 2009. "Gap solitons in fermion superfluids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 648-659.
    8. Triki, Houria & Choudhuri, Amitava & Zhou, Qin & Biswas, Anjan & Alshomrani, Ali Saleh, 2020. "Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    9. Milena Horvath & Sudipta Dhar & Arpita Das & Matthew D. Frye & Yanliang Guo & Jeremy M. Hutson & Manuele Landini & Hanns-Christoph Nägerl, 2024. "Bose-Einstein condensation of non-ground-state caesium atoms," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Liu, Fei-Yan & Triki, Houria & Zhou, Qin, 2024. "Oscillatory nondegenerate solitons in spin–orbit coupled spin-1/2 Bose–Einstein condensates with weak Raman coupling," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Zhao-Xian Chen & Yu-Gui Peng & Ze-Guo Chen & Yuan Liu & Peng Chen & Xue-Feng Zhu & Yan-Qing Lu, 2024. "Robust temporal adiabatic passage with perfect frequency conversion between detuned acoustic cavities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Stéphane Coen & Bruno Garbin & Gang Xu & Liam Quinn & Nathan Goldman & Gian-Luca Oppo & Miro Erkintalo & Stuart G. Murdoch & Julien Fatome, 2024. "Nonlinear topological symmetry protection in a dissipative system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Kengne, Emmanuel & Liu, WuMing, 2024. "Mixed localized matter wave solitons in Bose–Einstein condensates with time-varying interatomic interaction and a time-varying complex harmonic trapping potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. dos Santos, Mateus C.P., 2024. "Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    15. Ma, Yu-Lan & Li, Bang-Qing, 2022. "Kraenkel-Manna-Merle saturated ferromagnetic system: Darboux transformation and loop-like soliton excitations," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Ye, Zhi-Jiang & Chen, Yi-Xi & Zheng, Yi-Yin & Chen, Xiong-Wei & Liu, Bin, 2020. "Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    19. Liu, Fei-Yan & Xu, Su-Yong & Triki, Houria & Choudhuri, Amitava & Zhou, Qin, 2024. "Spatiotemporal modulated solitons in a quasi-one-dimensional spin-1 Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    20. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33478-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.