Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-30337-0
Download full text from publisher
References listed on IDEAS
- Gao-Feng Han & Feng Li & Wei Zou & Mohammadreza Karamad & Jong-Pil Jeon & Seong-Wook Kim & Seok-Jin Kim & Yunfei Bu & Zhengping Fu & Yalin Lu & Samira Siahrostami & Jong-Beom Baek, 2020. "Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Qiaowan Chang & Pu Zhang & Amir Hassan Bagherzadeh Mostaghimi & Xueru Zhao & Steven R. Denny & Ji Hoon Lee & Hongpeng Gao & Ying Zhang & Huolin L. Xin & Samira Siahrostami & Jingguang G. Chen & Zheng , 2020. "Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Chuan Xia & Peng Zhu & Qiu Jiang & Ying Pan & Wentao Liang & Eli Stavitski & Husam N. Alshareef & Haotian Wang, 2019. "Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices," Nature Energy, Nature, vol. 4(9), pages 776-785, September.
- Qingran Zhang & Xin Tan & Nicholas M. Bedford & Zhaojun Han & Lars Thomsen & Sean Smith & Rose Amal & Xunyu Lu, 2020. "Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
- Kun Jiang & Seoin Back & Austin J. Akey & Chuan Xia & Yongfeng Hu & Wentao Liang & Diane Schaak & Eli Stavitski & Jens K. Nørskov & Samira Siahrostami & Haotian Wang, 2019. "Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
- Hui Li & Peng Wen & Dominique S. Itanze & Zachary D. Hood & Shiba Adhikari & Chang Lu & Xiao Ma & Chaochao Dun & Lin Jiang & David L. Carroll & Yejun Qiu & Scott M. Geyer, 2020. "Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qi Huang & Baokai Xia & Ming Li & Hongxin Guan & Markus Antonietti & Sheng Chen, 2024. "Single-zinc vacancy unlocks high-rate H2O2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Peike Cao & Xie Quan & Xiaowa Nie & Kun Zhao & Yanming Liu & Shuo Chen & Hongtao Yu & Jingguang G. Chen, 2023. "Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Lele Cui & Bin Chen & Dongxu Chen & Chen He & Yi Liu & Hongyi Zhang & Jian Qiu & Le Liu & Wenheng Jing & Zhenghua Zhang, 2024. "Species mass transfer governs the selectivity of gas diffusion electrodes toward H2O2 electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Hongni Chen & Chao Wang & Han Wu & Lili Li & Yali Xing & Chuanhui Zhang & Xiaojing Long, 2024. "Host-guest-induced electronic state triggers two-electron oxygen reduction electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Longxiang Liu & Liqun Kang & Jianrui Feng & David G. Hopkinson & Christopher S. Allen & Yeshu Tan & Hao Gu & Iuliia Mikulska & Veronica Celorrio & Diego Gianolio & Tianlei Wang & Liquan Zhang & Kaiqi , 2024. "Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Qilong Wu & Haiyuan Zou & Xin Mao & Jinghan He & Yanmei Shi & Shuangming Chen & Xuecheng Yan & Liyun Wu & Chengguang Lang & Bin Zhang & Li Song & Xin Wang & Aijun Du & Qin Li & Yi Jia & Jun Chen & Xia, 2023. "Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Qiang Tian & Lingyan Jing & Hongnan Du & Yunchao Yin & Xiaolei Cheng & Jiaxin Xu & Junyu Chen & Zhuoxin Liu & Jiayu Wan & Jian Liu & Jinlong Yang, 2024. "Mesoporous carbon spheres with programmable interiors as efficient nanoreactors for H2O2 electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Peike Cao & Xie Quan & Xiaowa Nie & Kun Zhao & Yanming Liu & Shuo Chen & Hongtao Yu & Jingguang G. Chen, 2023. "Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Jinxing Chen & Qian Ma & Xiliang Zheng & Youxing Fang & Jin Wang & Shaojun Dong, 2022. "Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Jihyun Baek & Qiu Jin & Nathan Scott Johnson & Yue Jiang & Rui Ning & Apurva Mehta & Samira Siahrostami & Xiaolin Zheng, 2022. "Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Ping Liu & Teng Liang & Yutong Li & Ziqing Zhang & Zhuo Li & Ji Bian & Liqiang Jing, 2024. "Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Leiming Hu & Jacob A. Wrubel & Carlos M. Baez-Cotto & Fry Intia & Jae Hyung Park & Arthur Jeremy Kropf & Nancy Kariuki & Zhe Huang & Ahmed Farghaly & Lynda Amichi & Prantik Saha & Ling Tao & David A. , 2023. "A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Kaiyuan Wang & Qing Hong & Caixia Zhu & Yuan Xu & Wang Li & Ying Wang & Wenhao Chen & Xiang Gu & Xinghua Chen & Yanfeng Fang & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2024. "Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Minmin Yan & Zengxi Wei & Zhichao Gong & Bernt Johannessen & Gonglan Ye & Guanchao He & Jingjing Liu & Shuangliang Zhao & Chunyu Cui & Huilong Fei, 2023. "Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Wei Peng & Jiaxin Liu & Xiaoqing Liu & Liqun Wang & Lichang Yin & Haotian Tan & Feng Hou & Ji Liang, 2023. "Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Ruilin Wang & Hao Luo & Chengyu Duan & Huimin Liu & Mengdi Sun & Quan Zhou & Zheshun Ou & Yinglong Lu & Guanghui Luo & Jimmy C. Yu & Zhuofeng Hu, 2024. "Crystal OH mediating pathway for hydrogen peroxide production via two-electron water oxidation in non-carbonate electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Zhirong Zhang & Chen Feng & Dongdi Wang & Shiming Zhou & Ruyang Wang & Sunpei Hu & Hongliang Li & Ming Zuo & Yuan Kong & Jun Bao & Jie Zeng, 2022. "Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
- Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30337-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.