IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53714-3.html
   My bibliography  Save this article

Host-guest-induced electronic state triggers two-electron oxygen reduction electrocatalysis

Author

Listed:
  • Hongni Chen

    (Qingdao University)

  • Chao Wang

    (Qingdao University)

  • Han Wu

    (Qingdao University)

  • Lili Li

    (Qingdao University)

  • Yali Xing

    (Qingdao University)

  • Chuanhui Zhang

    (Qingdao University)

  • Xiaojing Long

    (Qingdao University)

Abstract

Supramolecular polymers possess great potential in catalysis owing to their distinctive molecular recognition and dynamic crosslinking features. However, investigating supramolecular electrocatalysts with high efficiency in oxygen reduction reaction to hydrogen peroxide (ORHP) remains an unexplored frontier. Herein, we present organic polymers for ORHP by introducing cyclodextrin-containing noncovalent building blocks, affording these supramolecules with abundant dynamic bonds. The electronic states and reaction kinetics are further well-modulated via a host-guest strategy, resulting in appropriate regional electron binding force and controllable chemical activity. Notably, integrating supramolecular units into phenyl group-containing model covalent polymer achieves a production rate of 9.14 mol g−1 cat h−1, with 98.01% Faraday efficiency, surpassing most reported metal-free electrocatalysts. Moreover, the dynamic bonds in supramolecular catalysts can effectively regulate the binding ability of oxygen intermediates, leading to high reactivity and selectivity for the 2e− pathway. Supported by theory calculation and in situ experiment, C atoms (site–1) adjacent to the –C = N (N) group are potential active sites. This work pioneers host-guest strategy and provides inspiring ideas for the ORHP process.

Suggested Citation

  • Hongni Chen & Chao Wang & Han Wu & Lili Li & Yali Xing & Chuanhui Zhang & Xiaojing Long, 2024. "Host-guest-induced electronic state triggers two-electron oxygen reduction electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53714-3
    DOI: 10.1038/s41467-024-53714-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53714-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53714-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Changmin Kim & Sung O Park & Sang Kyu Kwak & Zhenhai Xia & Guntae Kim & Liming Dai, 2023. "Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Marc Reimann & Christoph Kirsch & Daniel Sebastiani & Martin Kaupp, 2024. "Rydberg electron stabilizes the charge localized state of the diamine cation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Jinxing Chen & Qian Ma & Xiliang Zheng & Youxing Fang & Jin Wang & Shaojun Dong, 2022. "Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Alaaeddin Alsbaiee & Brian J. Smith & Leilei Xiao & Yuhan Ling & Damian E. Helbling & William R. Dichtel, 2016. "Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer," Nature, Nature, vol. 529(7585), pages 190-194, January.
    5. Hailin Fu & Jingyi Huang & Joost J. B. van der Tol & Lu Su & Yuyang Wang & Swayandipta Dey & Peter Zijlstra & George Fytas & Ghislaine Vantomme & Patricia Y. W. Dankers & E. W. Meijer, 2024. "Supramolecular polymers form tactoids through liquid–liquid phase separation," Nature, Nature, vol. 626(8001), pages 1011-1018, February.
    6. Xiao Zhang & Xunhua Zhao & Peng Zhu & Zachary Adler & Zhen-Yu Wu & Yuanyue Liu & Haotian Wang, 2022. "Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Minmin Yan & Zengxi Wei & Zhichao Gong & Bernt Johannessen & Gonglan Ye & Guanchao He & Jingjing Liu & Shuangliang Zhao & Chunyu Cui & Huilong Fei, 2023. "Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Lejing Li & Zhuofeng Hu & Yongqiang Kang & Shiyu Cao & Liangpang Xu & Luo Yu & Lizhi Zhang & Jimmy C. Yu, 2023. "Electrochemical generation of hydrogen peroxide from a zinc gallium oxide anode with dual active sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Peike Cao & Xie Quan & Xiaowa Nie & Kun Zhao & Yanming Liu & Shuo Chen & Hongtao Yu & Jingguang G. Chen, 2023. "Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Heng Zhu & Ximei Lv & Yuexu Wu & Wentao Wang & Yuping Wu & Shicheng Yan & Yuhui Chen, 2024. "Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Qianjun Zhi & Rong Jiang & Xiya Yang & Yucheng Jin & Dongdong Qi & Kang Wang & Yunpeng Liu & Jianzhuang Jiang, 2024. "Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H2O2 electroproduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Tian Tian & Yuxuan Fang & Wenhui Wang & Meifang Yang & Ying Tan & Chuan Xu & Shuo Zhang & Yuxin Chen & Mingyi Xu & Bin Cai & Wu-Qiang Wu, 2023. "Durable organic nonlinear optical membranes for thermotolerant lightings and in vivo bioimaging," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Kaiyuan Wang & Qing Hong & Caixia Zhu & Yuan Xu & Wang Li & Ying Wang & Wenhao Chen & Xiang Gu & Xinghua Chen & Yanfeng Fang & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2024. "Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ying-Jie Zhang & Gui-Xiang Huang & Lea R. Winter & Jie-Jie Chen & Lili Tian & Shu-Chuan Mei & Ze Zhang & Fei Chen & Zhi-Yan Guo & Rong Ji & Ye-Zi You & Wen-Wei Li & Xian-Wei Liu & Han-Qing Yu & Menach, 2022. "Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Qi Huang & Baokai Xia & Ming Li & Hongxin Guan & Markus Antonietti & Sheng Chen, 2024. "Single-zinc vacancy unlocks high-rate H2O2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Anne Ponchel & Eric Monflier, 2023. "Application of cyclodextrins as second-sphere coordination ligands for gold recovery," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    11. Liangxiao Tan & Jun-Hao Zhou & Jian-Ke Sun & Jiayin Yuan, 2022. "Electrostatically cooperative host-in-host of metal cluster ⊂ ionic organic cages in nanopores for enhanced catalysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Wei Zhang & Zhiliang Zhu & Hua Zhang & Yanling Qiu, 2017. "Selective Removal of the Genotoxic Compound 2-Aminopyridine in Water using Molecularly Imprinted Polymers Based on Magnetic Chitosan and β-Cyclodextrin," IJERPH, MDPI, vol. 14(9), pages 1-22, August.
    13. Yining Sun & Kui Fan & Jinze Li & Lei Wang & Yusen Yang & Zhenhua Li & Mingfei Shao & Xue Duan, 2024. "Boosting electrochemical oxygen reduction to hydrogen peroxide coupled with organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Lingling Zhang & Yu Guo & Rui Hao & Yafei Shi & Hongjun You & Hu Nan & Yanzhu Dai & Danjun Liu & Dangyuan Lei & Jixiang Fang, 2021. "Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic mesoporous nanosponge for ultrasensitive nanosensors," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Tian Tian & Meifang Yang & Yuxuan Fang & Shuo Zhang & Yuxin Chen & Lianzhou Wang & Wu-Qiang Wu, 2023. "Large-area waterproof and durable perovskite luminescent textiles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Peike Cao & Xie Quan & Xiaowa Nie & Kun Zhao & Yanming Liu & Shuo Chen & Hongtao Yu & Jingguang G. Chen, 2023. "Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53714-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.