IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v429y2004i6989d10.1038_nature02540.html
   My bibliography  Save this article

Self-incompatibility triggers programmed cell death in Papaver pollen

Author

Listed:
  • Steven G. Thomas

    (University of Birmingham)

  • Vernonica E. Franklin-Tong

    (University of Birmingham)

Abstract

Sexual reproduction in many angiosperm plants involves self-incompatibility (SI), which is one of the most important mechanisms to prevent inbreeding. SI is genetically controlled by the S-locus, and involves highly specific interactions during pollination between pollen and the pistil on which it lands. This results in the rejection of incompatible (‘self’) pollen, whereas compatible (‘non-self’) pollen is allowed to fertilize the plant1. In Papaver rhoeas, S-proteins encoded by the stigma component of the S-locus interact with incompatible pollen, triggering a Ca2+-dependent signalling network2,3,4,5,6,7, resulting in the inhibition of pollen-tube growth. Programmed cell death (PCD) is a mechanism used by many organisms to destroy unwanted cells in a precisely regulated manner8,9,10. Here we show that PCD is triggered by SI in an S-specific manner in incompatible pollen. This provides a demonstration of a SI system using PCD, revealing a novel mechanism to prevent self-fertilization. Furthermore, our data reveal that the response is biphasic; rapid inhibition of pollen-tube growth is followed by PCD, which is involved in a later ‘decision-making’ phase, making inhibition irreversible.

Suggested Citation

  • Steven G. Thomas & Vernonica E. Franklin-Tong, 2004. "Self-incompatibility triggers programmed cell death in Papaver pollen," Nature, Nature, vol. 429(6989), pages 305-309, May.
  • Handle: RePEc:nat:nature:v:429:y:2004:i:6989:d:10.1038_nature02540
    DOI: 10.1038/nature02540
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02540
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhibin Chen & Zhaogui Zhang & Huairen Zhang & Kai Li & Darun Cai & Li Zhao & Juan Liu & Huabang Chen, 2022. "A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:429:y:2004:i:6989:d:10.1038_nature02540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.