IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05569-8.html
   My bibliography  Save this article

Bioinspired 3D structures with programmable morphologies and motions

Author

Listed:
  • Amirali Nojoomi

    (University of Texas at Arlington)

  • Hakan Arslan

    (University of Texas at Arlington)

  • Kwan Lee

    (University of Texas at Arlington)

  • Kyungsuk Yum

    (University of Texas at Arlington)

Abstract

Living organisms use spatially controlled expansion and contraction of soft tissues to achieve complex three-dimensional (3D) morphologies and movements and thereby functions. However, replicating such features in man-made materials remains a challenge. Here we report an approach that encodes 2D hydrogels with spatially and temporally controlled growth (expansion and contraction) to create 3D structures with programmed morphologies and motions. This approach uses temperature-responsive hydrogels with locally programmable degrees and rates of swelling and shrinking. This method simultaneously prints multiple 3D structures with custom design from a single precursor in a one-step process within 60 s. We suggest simple yet versatile design rules for creating complex 3D structures and a theoretical model for predicting their motions. We reveal that the spatially nonuniform rates of swelling and shrinking of growth-induced 3D structures determine their dynamic shape changes. We demonstrate shape-morphing 3D structures with diverse morphologies, including bioinspired structures with programmed sequential motions.

Suggested Citation

  • Amirali Nojoomi & Hakan Arslan & Kwan Lee & Kyungsuk Yum, 2018. "Bioinspired 3D structures with programmable morphologies and motions," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05569-8
    DOI: 10.1038/s41467-018-05569-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05569-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05569-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoqing Yang & Tengxiao Liu & Lihua Jin & Yu Huang & Xiangfeng Duan & Hongtao Sun, 2024. "Tailoring smart hydrogels through manipulation of heterogeneous subdomains," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Rasool Nasseri & Negin Bouzari & Junting Huang & Hossein Golzar & Sarah Jankhani & Xiaowu (Shirley) Tang & Tizazu H. Mekonnen & Amirreza Aghakhani & Hamed Shahsavan, 2023. "Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Ruohong Shi & Kuan-Lin Chen & Joshua Fern & Siming Deng & Yixin Liu & Dominic Scalise & Qi Huang & Noah J. Cowan & David H. Gracias & Rebecca Schulman, 2024. "Programming gel automata shapes using DNA instructions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05569-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.