IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18350-7.html
   My bibliography  Save this article

Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction

Author

Listed:
  • Feiyan Xu

    (Wuhan University of Technology
    Xianhu Hydrogen Valley)

  • Kai Meng

    (Wuhan University of Technology)

  • Bei Cheng

    (Wuhan University of Technology)

  • Shengyao Wang

    (Huazhong Agricultural University)

  • Jingsan Xu

    (Queensland University of Technology)

  • Jiaguo Yu

    (Wuhan University of Technology
    Xianhu Hydrogen Valley)

Abstract

Exploring photocatalysts to promote CO2 photoreduction into solar fuels is of great significance. We develop TiO2/perovskite (CsPbBr3) S-scheme heterojunctions synthesized by a facile electrostatic-driven self-assembling approach. Density functional theory calculation combined with experimental studies proves the electron transfer from CsPbBr3 quantum dots (QDs) to TiO2, resulting in the construction of internal electric field (IEF) directing from CsPbBr3 to TiO2 upon hybridization. The IEF drives the photoexcited electrons in TiO2 to CsPbBr3 upon light irradiation as revealed by in-situ X-ray photoelectron spectroscopy analysis, suggesting the formation of an S-scheme heterojunction in the TiO2/CsPbBr3 nanohybrids which greatly promotes the separation of electron-hole pairs to foster efficient CO2 photoreduction. The hybrid nanofibers unveil a higher CO2-reduction rate (9.02 μmol g–1 h–1) comparing with pristine TiO2 nanofibers (4.68 μmol g–1 h–1). Isotope (13CO2) tracer results confirm that the reduction products originate from CO2 source.

Suggested Citation

  • Feiyan Xu & Kai Meng & Bei Cheng & Shengyao Wang & Jingsan Xu & Jiaguo Yu, 2020. "Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18350-7
    DOI: 10.1038/s41467-020-18350-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18350-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18350-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajuan Ma & Xiaoxuan Yi & Shaolei Wang & Tao Li & Bien Tan & Chuncheng Chen & Tetsuro Majima & Eric R. Waclawik & Huaiyong Zhu & Jingyu Wang, 2022. "Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Xin Wang & Boyan Liu & Siqing Ma & Yingjuan Zhang & Lianzhou Wang & Gangqiang Zhu & Wei Huang & Songcan Wang, 2024. "Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Tian, Di & Qu, Zhiguo & Zhang, Jianfei, 2023. "Electrochemical condition optimization and techno-economic analysis on the direct CO2 electroreduction of flue gas," Applied Energy, Elsevier, vol. 351(C).
    5. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Aiwen Wang & Meng Du & Jiaxin Ni & Dongqing Liu & Yunhao Pan & Xiongying Liang & Dongmei Liu & Jun Ma & Jing Wang & Wei Wang, 2023. "Enhanced and synergistic catalytic activation by photoexcitation driven S−scheme heterojunction hydrogel interface electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Fang Li & Xiaoyang Yue & Yulong Liao & Liang Qiao & Kangle Lv & Quanjun Xiang, 2023. "Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18350-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.