IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28959-5.html
   My bibliography  Save this article

A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries

Author

Listed:
  • Yuji Zhang

    (Sun Yat-sen (Zhongshan) University)

  • Yuan Wu

    (Sun Yat-sen (Zhongshan) University)

  • Huiyi Li

    (Sun Yat-sen (Zhongshan) University)

  • Jinghao Chen

    (Sun Yat-sen (Zhongshan) University)

  • Danni Lei

    (Sun Yat-sen (Zhongshan) University)

  • Chengxin Wang

    (Sun Yat-sen (Zhongshan) University)

Abstract

Engineering the formulation of non-aqueous liquid electrolytes is a viable strategy to produce high-energy lithium metal batteries. However, when the lithium metal anode is combined with a Ni-rich layered cathode, the (electro)chemical stability of both electrodes could be compromised. To circumvent this issue, we report a combination of aluminum ethoxide (0.4 wt.%) and fluoroethylene carbonate (5 vol.%) as additives in a conventional LiPF6-containing carbonate-based electrolyte solution. This electrolyte formulation enables the formation of mechanically robust and ionically conductive interphases on both electrodes’ surfaces. In particular, the alumina formed at the interphases prevents the formation of dendritic structures on the lithium metal anode and mitigate the stress-induced cracking and phase transformation in the Ni-rich layered cathode. By coupling a thin (i.e., about 40 μm) lithium metal anode with a high-loading (i.e., 21.5 mg cm−2) LiNi0.8Co0.1Mn0.1O2-based cathode in coin cell configuration and lean electrolyte conditions, the engineered electrolyte allows a specific discharge capacity retention of 80.3% after 130 cycles at 60 mA g−1 and 30 °C which results in calculated specific cell energy of about 350 Wh kg−1.

Suggested Citation

  • Yuji Zhang & Yuan Wu & Huiyi Li & Jinghao Chen & Danni Lei & Chengxin Wang, 2022. "A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28959-5
    DOI: 10.1038/s41467-022-28959-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28959-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28959-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    2. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    7. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    9. Ruwani Kaushalya & Poobalasuntharam Iyngaran & Navaratnarajah Kuganathan & Alexander Chroneos, 2019. "Defect, Diffusion and Dopant Properties of NaNiO 2 : Atomistic Simulation Study," Energies, MDPI, vol. 12(16), pages 1-10, August.
    10. Li Sheng & Qianqian Wang & Xiang Liu & Hao Cui & Xiaolin Wang & Yulong Xu & Zonglong Li & Li Wang & Zonghai Chen & Gui-Liang Xu & Jianlong Wang & Yaping Tang & Khalil Amine & Hong Xu & Xiangming He, 2022. "Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. He, Lihua & Xu, Shengming & Zhao, Zhongwei, 2017. "Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis," Energy, Elsevier, vol. 134(C), pages 962-967.
    12. Wenlin Zhang & Yongqi Zhao & Yu Huo, 2020. "Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries," Energies, MDPI, vol. 13(11), pages 1-13, June.
    13. Xiao Zhu & Tuan K. A. Hoang & Pu Chen, 2017. "Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries," Energies, MDPI, vol. 10(11), pages 1-17, November.
    14. Samson Yuxiu Lai & Carmen Cavallo & Muhammad E. Abdelhamid & Fengliu Lou & Alexey Y. Koposov, 2021. "Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance," Energies, MDPI, vol. 14(11), pages 1-24, May.
    15. Xing Zhao & Peng Wang & Yan Wang & Peipei Chao & Honglei Dong, 2023. "Coprecipitation Synthesis and Impedance Studies on Electrode Interface Characteristics of 0.5Li 2 MnO 3 ·0.5Li(Ni 0.44 Mn 0.44 Co 0.12 )O 2 Cathode Material," Energies, MDPI, vol. 16(16), pages 1-16, August.
    16. Linjing Zhang & Jiuchun Jiang & Weige Zhang, 2017. "Capacity Decay Mechanism of the LCO + NMC532/Graphite Cells Combined with Post-Mortem Technique," Energies, MDPI, vol. 10(8), pages 1-16, August.
    17. Ying Liu & Xueying Li & Anupriya K. Haridas & Yuanzheng Sun & Jungwon Heo & Jou-Hyeon Ahn & Younki Lee, 2020. "Biomass-Derived Graphitic Carbon Encapsulated Fe/Fe 3 C Composite as an Anode Material for High-Performance Lithium Ion Batteries," Energies, MDPI, vol. 13(4), pages 1-10, February.
    18. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    19. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Xiao, Feiyu & Xing, Bobin & Kong, Lingzhao & Xia, Yong, 2021. "Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries," Energy, Elsevier, vol. 230(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28959-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.