IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46417-2.html
   My bibliography  Save this article

SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle

Author

Listed:
  • Kshitiz Walia

    (CSIR-Institute of Microbial Technology (IMTECH)
    Academy of Scientific and Innovative Research (AcSIR))

  • Abhishek Sharma

    (CSIR-Institute of Microbial Technology (IMTECH))

  • Sankalita Paul

    (Indian Institute of Science Education and Research (IISER))

  • Priya Chouhan

    (CSIR-Institute of Microbial Technology (IMTECH)
    Academy of Scientific and Innovative Research (AcSIR))

  • Gaurav Kumar

    (CSIR-Institute of Microbial Technology (IMTECH))

  • Rajesh Ringe

    (CSIR-Institute of Microbial Technology (IMTECH))

  • Mahak Sharma

    (Indian Institute of Science Education and Research (IISER))

  • Amit Tuli

    (CSIR-Institute of Microbial Technology (IMTECH)
    Academy of Scientific and Innovative Research (AcSIR))

Abstract

SARS-CoV-2, the causative agent of COVID-19, uses the host endolysosomal system for entry, replication, and egress. Previous studies have shown that the SARS-CoV-2 virulence factor ORF3a interacts with the lysosomal tethering factor HOPS complex and blocks HOPS-mediated late endosome and autophagosome fusion with lysosomes. Here, we report that SARS-CoV-2 infection leads to hyperactivation of the late endosomal and lysosomal small GTP-binding protein Rab7, which is dependent on ORF3a expression. We also observed Rab7 hyperactivation in naturally occurring ORF3a variants encoded by distinct SARS-CoV-2 variants. We found that ORF3a, in complex with Vps39, sequesters the Rab7 GAP TBC1D5 and displaces Rab7 from this complex. Thus, ORF3a disrupts the GTP hydrolysis cycle of Rab7, which is beneficial for viral production, whereas the Rab7 GDP-locked mutant strongly reduces viral replication. Hyperactivation of Rab7 in ORF3a-expressing cells impaired CI-M6PR retrieval from late endosomes to the trans-Golgi network, disrupting the biosynthetic transport of newly synthesized hydrolases to lysosomes. Furthermore, the tethering of the Rab7- and Arl8b-positive compartments was strikingly reduced upon ORF3a expression. As SARS-CoV-2 egress requires Arl8b, these findings suggest that ORF3a-mediated hyperactivation of Rab7 serves a multitude of functions, including blocking endolysosome formation, interrupting the transport of lysosomal hydrolases, and promoting viral egress.

Suggested Citation

  • Kshitiz Walia & Abhishek Sharma & Sankalita Paul & Priya Chouhan & Gaurav Kumar & Rajesh Ringe & Mahak Sharma & Amit Tuli, 2024. "SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46417-2
    DOI: 10.1038/s41467-024-46417-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46417-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46417-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Da Jia & Jin-San Zhang & Fang Li & Jing Wang & Zhihui Deng & Mark A. White & Douglas G. Osborne & Christine Phillips-Krawczak & Timothy S. Gomez & Haiying Li & Amika Singla & Ezra Burstein & Daniel D., 2016. "Structural and mechanistic insights into regulation of the retromer coat by TBC1d5," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    2. David E. Gordon & Gwendolyn M. Jang & Mehdi Bouhaddou & Jiewei Xu & Kirsten Obernier & Kris M. White & Matthew J. O’Meara & Veronica V. Rezelj & Jeffrey Z. Guo & Danielle L. Swaney & Tia A. Tummino & , 2020. "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing," Nature, Nature, vol. 583(7816), pages 459-468, July.
    3. Gaurav Kumar & Prateek Chawla & Neha Dhiman & Sanya Chadha & Sheetal Sharma & Kanupriya Sethi & Mahak Sharma & Amit Tuli, 2022. "RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taha Y. Taha & Irene P. Chen & Jennifer M. Hayashi & Takako Tabata & Keith Walcott & Gabriella R. Kimmerly & Abdullah M. Syed & Alison Ciling & Rahul K. Suryawanshi & Hannah S. Martin & Bryan H. Bach , 2023. "Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Christine E. Peters & Ursula Schulze-Gahmen & Manon Eckhardt & Gwendolyn M. Jang & Jiewei Xu & Ernst H. Pulido & Conner Bardine & Charles S. Craik & Melanie Ott & Or Gozani & Kliment A. Verba & Ruth H, 2022. "Structure-function analysis of enterovirus protease 2A in complex with its essential host factor SETD3," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Scotland E. Farley & Jennifer E. Kyle & Hans C. Leier & Lisa M. Bramer & Jules B. Weinstein & Timothy A. Bates & Joon-Yong Lee & Thomas O. Metz & Carsten Schultz & Fikadu G. Tafesse, 2022. "A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Andrea Fontana & Francesca Vercellone & Mattia Conte & Mario Nicodemi, 2024. "Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Siwen Long & Mykhailo Guzyk & Laura Perez Vidakovics & Xiao Han & Renhua Sun & Megan Wang & Marc D. Panas & Egon Urgard & Jonathan M. Coquet & Andres Merits & Adnane Achour & Gerald M. McInerney, 2024. "SARS-CoV-2 N protein recruits G3BP to double membrane vesicles to promote translation of viral mRNAs," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Haofeng Wang & Qi Yang & Xiaoce Liu & Zili Xu & Maolin Shao & Dongxu Li & Yinkai Duan & Jielin Tang & Xianqiang Yu & Yumin Zhang & Aihua Hao & Yajie Wang & Jie Chen & Chenghao Zhu & Luke Guddat & Hong, 2023. "Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Ayan Chatterjee & Robin Walters & Zohair Shafi & Omair Shafi Ahmed & Michael Sebek & Deisy Gysi & Rose Yu & Tina Eliassi-Rad & Albert-László Barabási & Giulia Menichetti, 2023. "Improving the generalizability of protein-ligand binding predictions with AI-Bind," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Eutteum Jeong & Rose Willett & Alberto Rissone & Martina Spina & Rosa Puertollano, 2024. "TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Xiaopan Gao & Huabin Tian & Kaixiang Zhu & Qing Li & Wei Hao & Linyue Wang & Bo Qin & Hongyu Deng & Sheng Cui, 2022. "Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Thomas Kruse & Caroline Benz & Dimitriya H. Garvanska & Richard Lindqvist & Filip Mihalic & Fabian Coscia & Raviteja Inturi & Ahmed Sayadi & Leandro Simonetti & Emma Nilsson & Muhammad Ali & Johanna K, 2021. "Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    14. Nell Saunders & Blandine Monel & Nadège Cayet & Lorenzo Archetti & Hugo Moreno & Alexandre Jeanne & Agathe Marguier & Julian Buchrieser & Timothy Wai & Olivier Schwartz & Mathieu Fréchin, 2024. "Dynamic label-free analysis of SARS-CoV-2 infection reveals virus-induced subcellular remodeling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Filip Mihalič & Leandro Simonetti & Girolamo Giudice & Marie Rubin Sander & Richard Lindqvist & Marie Berit Akpiroro Peters & Caroline Benz & Eszter Kassa & Dilip Badgujar & Raviteja Inturi & Muhammad, 2023. "Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Agnieszka A. Kendrick & Jenna R. Christensen, 2022. "Bidirectional lysosome transport: a balancing act between ARL8 effectors," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    17. Hanbaek Lyu & Yacoub H. Kureh & Joshua Vendrow & Mason A. Porter, 2024. "Learning low-rank latent mesoscale structures in networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Ma’ayan Israeli & Yaara Finkel & Yfat Yahalom-Ronen & Nir Paran & Theodor Chitlaru & Ofir Israeli & Inbar Cohen-Gihon & Moshe Aftalion & Reut Falach & Shahar Rotem & Uri Elia & Ital Nemet & Limor Klik, 2022. "Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Asolina Braun & Louise C. Rowntree & Ziyi Huang & Kirti Pandey & Nikolas Thuesen & Chen Li & Jan Petersen & Dene R. Littler & Shabana Raji & Thi H. O. Nguyen & Emma Jappe Lange & Gry Persson & Michael, 2024. "Mapping the immunopeptidome of seven SARS-CoV-2 antigens across common HLA haplotypes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Ramiz Salama & Fadi Al-Turjman, 2023. "Sustainable Energy Production in Smart Cities," Sustainability, MDPI, vol. 15(22), pages 1-25, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46417-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.