IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28688-9.html
   My bibliography  Save this article

Rejuvenation of plasticity via deformation graining in magnesium

Author

Listed:
  • Bo-Yu Liu

    (Xi’an Jiaotong University)

  • Zhen Zhang

    (Hefei University of Technology)

  • Fei Liu

    (Xi’an Jiaotong University)

  • Nan Yang

    (Xi’an Jiaotong University)

  • Bin Li

    (University of Nevada)

  • Peng Chen

    (Jilin University)

  • Yu Wang

    (University of Science and Technology of China)

  • Jin-Hua Peng

    (Jiangsu University of Science and Technology)

  • Ju Li

    (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology
    Department of Materials Science and Engineering, Massachusetts Institute of Technology)

  • En Ma

    (Xi’an Jiaotong University)

  • Zhi-Wei Shan

    (Xi’an Jiaotong University)

Abstract

Magnesium, the lightest structural metal, usually exhibits limited ambient plasticity when compressed along its crystallographic c-axis (the “hard” orientation of magnesium). Here we report large plasticity in c-axis compression of submicron magnesium single crystal achieved by a dual-stage deformation. We show that when the plastic flow gradually strain-hardens the magnesium crystal to gigapascal level, at which point dislocation mediated plasticity is nearly exhausted, the sample instantly pancakes without fracture, accompanying a conversion of the initial single crystal into multiple grains that roughly share a common rotation axis. Atomic-scale characterization, crystallographic analyses and molecular dynamics simulations indicate that the new grains can form via transformation of pyramidal to basal planes. We categorize this grain formation as “deformation graining”. The formation of new grains rejuvenates massive dislocation slip and deformation twinning to enable large plastic strains.

Suggested Citation

  • Bo-Yu Liu & Zhen Zhang & Fei Liu & Nan Yang & Bin Li & Peng Chen & Yu Wang & Jin-Hua Peng & Ju Li & En Ma & Zhi-Wei Shan, 2022. "Rejuvenation of plasticity via deformation graining in magnesium," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28688-9
    DOI: 10.1038/s41467-022-28688-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28688-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28688-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ge Wu & Ka-Cheung Chan & Linli Zhu & Ligang Sun & Jian Lu, 2017. "Dual-phase nanostructuring as a route to high-strength magnesium alloys," Nature, Nature, vol. 545(7652), pages 80-83, May.
    2. Zhaoxuan Wu & W. A. Curtin, 2015. "The origins of high hardening and low ductility in magnesium," Nature, Nature, vol. 526(7571), pages 62-67, October.
    3. Robert D. MacPherson & David J. Srolovitz, 2007. "The von Neumann relation generalized to coarsening of three-dimensional microstructures," Nature, Nature, vol. 446(7139), pages 1053-1055, April.
    4. Zhuoran Zeng & Jian-Feng Nie & Shi-Wei Xu & Chris Davies & Nick Birbilis, 2017. "Super-formable pure magnesium at room temperature," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    5. Bo-Yu Liu & Jian Wang & Bin Li & Lu Lu & Xi-Yan Zhang & Zhi-Wei Shan & Ju Li & Chun-Lin Jia & Jun Sun & Evan Ma, 2014. "Twinning-like lattice reorientation without a crystallographic twinning plane," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    6. Lian-Yi Chen & Jia-Quan Xu & Hongseok Choi & Marta Pozuelo & Xiaolong Ma & Sanjit Bhowmick & Jenn-Ming Yang & Suveen Mathaudhu & Xiao-Chun Li, 2015. "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles," Nature, Nature, vol. 528(7583), pages 539-543, December.
    7. Spencer L. Thomas & Kongtao Chen & Jian Han & Prashant K. Purohit & David J. Srolovitz, 2017. "Reconciling grain growth and shear-coupled grain boundary migration," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Wenqing Zhu & Zhi Li & Hua Shu & Huajian Gao & Xiaoding Wei, 2024. "Amorphous alloys surpass E/10 strength limit at extreme strain rates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Liliang Shao & Qiang Luo & Mingjie Zhang & Lin Xue & Jingxian Cui & Qianzi Yang & Haibo Ke & Yao Zhang & Baolong Shen & Weihua Wang, 2024. "Dual-phase nano-glass-hydrides overcome the strength-ductility trade-off and magnetocaloric bottlenecks of rare earth based amorphous alloys," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Ge Wu & Chang Liu & Yong-Qiang Yan & Sida Liu & Xinyu Ma & Shengying Yue & Zhi-Wei Shan, 2024. "Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Lin Jiang & Mingyu Gong & Jian Wang & Zhiliang Pan & Xin Wang & Dalong Zhang & Y. Morris Wang & Jim Ciston & Andrew M. Minor & Mingjie Xu & Xiaoqing Pan & Timothy J. Rupert & Subhash Mahajan & Enrique, 2022. "Visualization and validation of twin nucleation and early-stage growth in magnesium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yang He & Zhengwu Fang & Chongmin Wang & Guofeng Wang & Scott X. Mao, 2024. "In situ observation of the atomic shuffles during the { $${{11}}\bar{{{2}}}{{1}}$$ 11 2 ¯ 1 } twinning in hexagonal close-packed rhenium," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Hang Lv & Xinxin Gao & Kan Zhang & Mao Wen & Xingjia He & Zhongzhen Wu & Chang Liu & Changfeng Chen & Weitao Zheng, 2023. "Bamboo-like dual-phase nanostructured copper composite strengthened by amorphous boron framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Jianan Yin & Yang Yan & Mulin Miao & Jiayin Tang & Jiali Jiang & Hui Liu & Yuhan Chen & Yinxian Chen & Fucong Lyu & Zhengyi Mao & Yunhu He & Lei Wan & Binbin Zhou & Jian Lu, 2024. "Diamond with Sp2-Sp3 composite phase for thermometry at Millikelvin temperatures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Xingjia He & Yu Zhang & Xinlei Gu & Jiangwei Wang & Jinlei Qi & Jun Hao & Longpeng Wang & Hao Huang & Mao Wen & Kan Zhang & Weitao Zheng, 2023. "Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Yongsheng Sun & Yuzhen Wang & Weibin Chen & Qingquan Jiang & Dongdan Chen & Guoping Dong & Zhiguo Xia, 2024. "Rapid synthesis of phosphor-glass composites in seconds based on particle self-stabilization," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Yingang Liu & Jingqi Zhang & Ranming Niu & Mohamad Bayat & Ying Zhou & Yu Yin & Qiyang Tan & Shiyang Liu & Jesper Henri Hattel & Miaoquan Li & Xiaoxu Huang & Julie Cairney & Yi-Sheng Chen & Mark Easto, 2024. "Manufacturing of high strength and high conductivity copper with laser powder bed fusion," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28688-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.