IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v446y2007i7139d10.1038_nature05745.html
   My bibliography  Save this article

The von Neumann relation generalized to coarsening of three-dimensional microstructures

Author

Listed:
  • Robert D. MacPherson

    (School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, USA)

  • David J. Srolovitz

    (Yeshiva University, New York, New York 10033, USA)

Abstract

Cellular structures or tessellations are ubiquitous in nature. Metals and ceramics commonly consist of space-filling arrays of single-crystal grains separated by a network of grain boundaries, and foams (froths) are networks of gas-filled bubbles separated by liquid walls. Cellular structures also occur in biological tissue, and in magnetic, ferroelectric and complex fluid contexts. In many situations, the cell/grain/bubble walls move under the influence of their surface tension (capillarity), with a velocity proportional to their mean curvature. As a result, the cells evolve and the structure coarsens. Over 50 years ago, von Neumann derived an exact formula for the growth rate of a cell in a two-dimensional cellular structure (using the relation between wall velocity and mean curvature, the fact that three domain walls meet at 120° and basic topology). This forms the basis of modern grain growth theory. Here we present an exact and much-sought extension of this result into three (and higher) dimensions. The present results may lead to the development of predictive models for capillarity-driven microstructure evolution in a wide range of industrial and commercial processing scenarios—such as the heat treatment of metals, or even controlling the ‘head’ on a pint of beer.

Suggested Citation

  • Robert D. MacPherson & David J. Srolovitz, 2007. "The von Neumann relation generalized to coarsening of three-dimensional microstructures," Nature, Nature, vol. 446(7139), pages 1053-1055, April.
  • Handle: RePEc:nat:nature:v:446:y:2007:i:7139:d:10.1038_nature05745
    DOI: 10.1038/nature05745
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05745
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo-Yu Liu & Zhen Zhang & Fei Liu & Nan Yang & Bin Li & Peng Chen & Yu Wang & Jin-Hua Peng & Ju Li & En Ma & Zhi-Wei Shan, 2022. "Rejuvenation of plasticity via deformation graining in magnesium," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:446:y:2007:i:7139:d:10.1038_nature05745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.