IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28549-5.html
   My bibliography  Save this article

CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses

Author

Listed:
  • Irmgard U. Haussmann

    (University of Birmingham
    Birmingham City University)

  • Yanying Wu

    (The University of Oxford)

  • Mohanakarthik P. Nallasivan

    (University of Birmingham)

  • Nathan Archer

    (University of Nottingham)

  • Zsuzsanna Bodi

    (University of Nottingham)

  • Daniel Hebenstreit

    (University of Warwick)

  • Scott Waddell

    (The University of Oxford)

  • Rupert Fray

    (University of Nottingham)

  • Matthias Soller

    (University of Birmingham
    University of Birmingham)

Abstract

Cap-adjacent nucleotides of animal, protist and viral mRNAs can be O-methylated at the 2‘ position of the ribose (cOMe). The functions of cOMe in animals, however, remain largely unknown. Here we show that the two cap methyltransferases (CMTr1 and CMTr2) of Drosophila can methylate the ribose of the first nucleotide in mRNA. Double-mutant flies lack cOMe but are viable. Consistent with prominent neuronal expression, they have a reward learning defect that can be rescued by conditional expression in mushroom body neurons before training. Among CMTr targets are cell adhesion and signaling molecules. Many are relevant for learning, and are also targets of Fragile X Mental Retardation Protein (FMRP). Like FMRP, cOMe is required for localization of untranslated mRNAs to synapses and enhances binding of the cap binding complex in the nucleus. Hence, our study reveals a mechanism to co-transcriptionally prime mRNAs by cOMe for localized protein synthesis at synapses.

Suggested Citation

  • Irmgard U. Haussmann & Yanying Wu & Mohanakarthik P. Nallasivan & Nathan Archer & Zsuzsanna Bodi & Daniel Hebenstreit & Scott Waddell & Rupert Fray & Matthias Soller, 2022. "CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28549-5
    DOI: 10.1038/s41467-022-28549-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28549-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28549-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James B. Brown & Nathan Boley & Robert Eisman & Gemma E. May & Marcus H. Stoiber & Michael O. Duff & Ben W. Booth & Jiayu Wen & Soo Park & Ana Maria Suzuki & Kenneth H. Wan & Charles Yu & Dayu Zhang &, 2014. "Diversity and dynamics of the Drosophila transcriptome," Nature, Nature, vol. 512(7515), pages 393-399, August.
    2. Irmgard U. Haussmann & Zsuzsanna Bodi & Eugenio Sanchez-Moran & Nigel P. Mongan & Nathan Archer & Rupert G. Fray & Matthias Soller, 2016. "m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination," Nature, Nature, vol. 540(7632), pages 301-304, December.
    3. Michael S. Grotewiel & Christine D. O. Beck & Kwok Hang Wu & Xin-Ran Zhu & Ronald L. Davis, 1998. "Integrin-mediated short-term memory in Drosophila," Nature, Nature, vol. 391(6666), pages 455-460, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Jie Du & Weizhe Chen & Xihua Jia & Xuejiao Xu & Emily Yang & Ruizhi Zhou & Yuqi Zhang & Matt Metzloff & Philipp W. Messer & Jackson Champer, 2024. "Germline Cas9 promoters with improved performance for homing gene drive," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. P Acera Mateos & A J Sethi & A Ravindran & A Srivastava & K Woodward & S Mahmud & M Kanchi & M Guarnacci & J Xu & Z W S Yuen & Y Zhou & A Sneddon & W Hamilton & J Gao & L M Starrs & R Hayashi & V Wick, 2024. "Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Xuedi Zhang & Ju Peng & Menghua Wu & Angyang Sun & Xiangyu Wu & Jie Zheng & Wangfei Shi & Guanjun Gao, 2023. "Broad phosphorylation mediated by testis-specific serine/threonine kinases contributes to spermiogenesis and male fertility," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Jorge Mata-Garrido & Yao Xiang & Yunhua Chang-Marchand & Caroline Reisacher & Elisabeth Ageron & Ida Chiara Guerrera & Iñigo Casafont & Aurelia Bruneau & Claire Cherbuy & Xavier Treton & Anne Dumay & , 2022. "The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Huaxia Shi & Ying Xu & Na Tian & Ming Yang & Fu-Sen Liang, 2022. "Inducible and reversible RNA N6-methyladenosine editing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhiping Zhang & Bongmin Bae & Winston H. Cuddleston & Pedro Miura, 2023. "Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Hong-Wen Tang & Kerstin Spirohn & Yanhui Hu & Tong Hao & István A. Kovács & Yue Gao & Richard Binari & Donghui Yang-Zhou & Kenneth H. Wan & Joel S. Bader & Dawit Balcha & Wenting Bian & Benjamin W. Bo, 2023. "Next-generation large-scale binary protein interaction network for Drosophila melanogaster," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Harpreet Kaur Salgania & Jutta Metz & Mandy Jeske, 2024. "ReLo is a simple and rapid colocalization assay to identify and characterize direct protein–protein interactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Zhantao Shao & Jack Hu & Allison Jandura & Ronit Wilk & Matthew Jachimowicz & Lingfeng Ma & Chun Hu & Abby Sundquist & Indrani Das & Phillip Samuel-Larbi & Julie A. Brill & Henry M. Krause, 2024. "Spatially revealed roles for lncRNAs in Drosophila spermatogenesis, Y chromosome function and evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Matthew A. Lawlor & Weihuan Cao & Christopher E. Ellison, 2021. "A transposon expression burst accompanies the activation of Y-chromosome fertility genes during Drosophila spermatogenesis," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Mi Zhang & Zsuzsanna Bodi & Katarzyna Mackinnon & Silin Zhong & Nathan Archer & Nigel P. Mongan & Gordon G. Simpson & Rupert G. Fray, 2022. "Two zinc finger proteins with functions in m6A writing interact with HAKAI," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Jianping Quan & Ming Yang & Xingwang Wang & Gengyuan Cai & Rongrong Ding & Zhanwei Zhuang & Shenping Zhou & Suxu Tan & Donglin Ruan & Jiajin Wu & Enqin Zheng & Zebin Zhang & Langqing Liu & Fanming Men, 2024. "Multi-omic characterization of allele-specific regulatory variation in hybrid pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28549-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.