IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v540y2016i7632d10.1038_nature20577.html
   My bibliography  Save this article

m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination

Author

Listed:
  • Irmgard U. Haussmann

    (School of Biosciences, College of Life and Environmental Sciences, University of Birmingham
    School of Life Science, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB)

  • Zsuzsanna Bodi

    (School of Biosciences, University of Nottingham)

  • Eugenio Sanchez-Moran

    (School of Biosciences, College of Life and Environmental Sciences, University of Birmingham)

  • Nigel P. Mongan

    (School of Veterinary Medicine and Sciences, University of Nottingham)

  • Nathan Archer

    (School of Biosciences, University of Nottingham)

  • Rupert G. Fray

    (School of Biosciences, University of Nottingham)

  • Matthias Soller

    (School of Biosciences, College of Life and Environmental Sciences, University of Birmingham)

Abstract

Two complementary studies describe how the pervasive N6-methyladenosine modification in mRNA can affect Drosophila sex determination, neuronal function and behaviour.

Suggested Citation

  • Irmgard U. Haussmann & Zsuzsanna Bodi & Eugenio Sanchez-Moran & Nigel P. Mongan & Nathan Archer & Rupert G. Fray & Matthias Soller, 2016. "m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination," Nature, Nature, vol. 540(7632), pages 301-304, December.
  • Handle: RePEc:nat:nature:v:540:y:2016:i:7632:d:10.1038_nature20577
    DOI: 10.1038/nature20577
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature20577
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature20577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P Acera Mateos & A J Sethi & A Ravindran & A Srivastava & K Woodward & S Mahmud & M Kanchi & M Guarnacci & J Xu & Z W S Yuen & Y Zhou & A Sneddon & W Hamilton & J Gao & L M Starrs & R Hayashi & V Wick, 2024. "Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Mi Zhang & Zsuzsanna Bodi & Katarzyna Mackinnon & Silin Zhong & Nathan Archer & Nigel P. Mongan & Gordon G. Simpson & Rupert G. Fray, 2022. "Two zinc finger proteins with functions in m6A writing interact with HAKAI," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Jorge Mata-Garrido & Yao Xiang & Yunhua Chang-Marchand & Caroline Reisacher & Elisabeth Ageron & Ida Chiara Guerrera & Iñigo Casafont & Aurelia Bruneau & Claire Cherbuy & Xavier Treton & Anne Dumay & , 2022. "The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Irmgard U. Haussmann & Yanying Wu & Mohanakarthik P. Nallasivan & Nathan Archer & Zsuzsanna Bodi & Daniel Hebenstreit & Scott Waddell & Rupert Fray & Matthias Soller, 2022. "CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Huaxia Shi & Ying Xu & Na Tian & Ming Yang & Fu-Sen Liang, 2022. "Inducible and reversible RNA N6-methyladenosine editing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:540:y:2016:i:7632:d:10.1038_nature20577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.