IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28525-z.html
   My bibliography  Save this article

Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial

Author

Listed:
  • Marta Reyman

    (Wilhelmina Children’s Hospital and University Medical Center Utrecht
    Spaarne Gasthuis)

  • Marlies A. Houten

    (Spaarne Gasthuis)

  • Rebecca L. Watson

    (University of Edinburgh)

  • Mei Ling J. N. Chu

    (Wilhelmina Children’s Hospital and University Medical Center Utrecht)

  • Kayleigh Arp

    (Wilhelmina Children’s Hospital and University Medical Center Utrecht)

  • Wouter J. Waal

    (Diakonessenhuis)

  • Irene Schiering

    (Spaarne Gasthuis)

  • Frans B. Plötz

    (Tergooiziekenhuis)

  • Rob J. L. Willems

    (University Medical Centre Utrecht)

  • Willem Schaik

    (University of Birmingham)

  • Elisabeth A. M. Sanders

    (Wilhelmina Children’s Hospital and University Medical Center Utrecht
    National Institute for Public Health and the Environment)

  • Debby Bogaert

    (Wilhelmina Children’s Hospital and University Medical Center Utrecht
    University of Edinburgh)

Abstract

Broad-spectrum antibiotics for suspected early-onset neonatal sepsis (sEONS) may have pronounced effects on gut microbiome development and selection of antimicrobial resistance when administered in the first week of life, during the assembly phase of the neonatal microbiome. Here, 147 infants born at ≥36 weeks of gestational age, requiring broad-spectrum antibiotics for treatment of sEONS in their first week of life were randomized 1:1:1 to receive three commonly prescribed intravenous antibiotic combinations, namely penicillin + gentamicin, co-amoxiclav + gentamicin or amoxicillin + cefotaxime (ZEBRA study, Trial Register NL4882). Average antibiotic treatment duration was 48 hours. A subset of 80 non-antibiotic treated infants from a healthy birth cohort served as controls (MUIS study, Trial Register NL3821). Rectal swabs and/or faeces were collected before and immediately after treatment, and at 1, 4 and 12 months of life. Microbiota were characterized by 16S rRNA-based sequencing and a panel of 31 antimicrobial resistance genes was tested using targeted qPCR. Confirmatory shotgun metagenomic sequencing was executed on a subset of samples. The overall gut microbial community composition and antimicrobial resistance gene profile majorly shift directly following treatment (R2 = 9.5%, adjusted p-value = 0.001 and R2 = 7.5%, adjusted p-value = 0.001, respectively) and normalize over 12 months (R2 = 1.1%, adjusted p-value = 0.03 and R2 = 0.6%, adjusted p-value = 0.23, respectively). We find a decreased abundance of Bifidobacterium spp. and increased abundance of Klebsiella and Enterococcus spp. in the antibiotic treated infants compared to controls. Amoxicillin + cefotaxime shows the largest effects on both microbial community composition and antimicrobial resistance gene profile, whereas penicillin + gentamicin exhibits the least effects. These data suggest that the choice of empirical antibiotics is relevant for adverse ecological side-effects.

Suggested Citation

  • Marta Reyman & Marlies A. Houten & Rebecca L. Watson & Mei Ling J. N. Chu & Kayleigh Arp & Wouter J. Waal & Irene Schiering & Frans B. Plötz & Rob J. L. Willems & Willem Schaik & Elisabeth A. M. Sande, 2022. "Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28525-z
    DOI: 10.1038/s41467-022-28525-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28525-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28525-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sathish Subramanian & Sayeeda Huq & Tanya Yatsunenko & Rashidul Haque & Mustafa Mahfuz & Mohammed A. Alam & Amber Benezra & Joseph DeStefano & Martin F. Meier & Brian D. Muegge & Michael J. Barratt & , 2014. "Persistent gut microbiota immaturity in malnourished Bangladeshi children," Nature, Nature, vol. 510(7505), pages 417-421, June.
    2. Tanya Yatsunenko & Federico E. Rey & Mark J. Manary & Indi Trehan & Maria Gloria Dominguez-Bello & Monica Contreras & Magda Magris & Glida Hidalgo & Robert N. Baldassano & Andrey P. Anokhin & Andrew C, 2012. "Human gut microbiome viewed across age and geography," Nature, Nature, vol. 486(7402), pages 222-227, June.
    3. Tommi Vatanen & Eric A. Franzosa & Randall Schwager & Surya Tripathi & Timothy D. Arthur & Kendra Vehik & Åke Lernmark & William A. Hagopian & Marian J. Rewers & Jin-Xiong She & Jorma Toppari & Anette, 2018. "The human gut microbiome in early-onset type 1 diabetes from the TEDDY study," Nature, Nature, vol. 562(7728), pages 589-594, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Achal Dhariwal & Polona Rajar & Gabriela Salvadori & Heidi Aarø Åmdal & Dag Berild & Ola Didrik Saugstad & Drude Fugelseth & Gorm Greisen & Ulf Dahle & Kirsti Haaland & Fernanda Cristina Petersen, 2024. "Prolonged hospitalization signature and early antibiotic effects on the nasopharyngeal resistome in preterm infants," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Xuanji Li & Asker Brejnrod & Jonathan Thorsen & Trine Zachariasen & Urvish Trivedi & Jakob Russel & Gisle Alberg Vestergaard & Jakob Stokholm & Morten Arendt Rasmussen & Søren Johannes Sørensen, 2023. "Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Victoria T. Chu & Alexandra Tsitsiklis & Eran Mick & Lilliam Ambroggio & Katrina L. Kalantar & Abigail Glascock & Christina M. Osborne & Brandie D. Wagner & Michael A. Matthay & Joseph L. DeRisi & Car, 2024. "The antibiotic resistance reservoir of the lung microbiome expands with age in a population of critically ill patients," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Martin Stocker & Claus Klingenberg & Lars Navér & Viveka Nordberg & Alberto Berardi & Salhab el Helou & Gerhard Fusch & Joseph M. Bliss & Dirk Lehnick & Varvara Dimopoulou & Nicholas Guerina & Joanna , 2023. "Less is more: Antibiotics at the beginning of life," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanette Fontaine & Sondra Turjeman & Karel Callens & Omry Koren, 2023. "The intersection of undernutrition, microbiome, and child development in the first years of life," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Ruairi C. Robertson & Thaddeus J. Edens & Lynnea Carr & Kuda Mutasa & Ethan K. Gough & Ceri Evans & Hyun Min Geum & Iman Baharmand & Sandeep K. Gill & Robert Ntozini & Laura E. Smith & Bernard Chasekw, 2023. "The gut microbiome and early-life growth in a population with high prevalence of stunting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Bin Zhu & David J. Edwards & Katherine M. Spaine & Laahirie Edupuganti & Andrey Matveyev & Myrna G. Serrano & Gregory A. Buck, 2024. "The association of maternal factors with the neonatal microbiota and health," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. John Molloy & Katrina Allen & Fiona Collier & Mimi L. K. Tang & Alister C. Ward & Peter Vuillermin, 2013. "The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life," IJERPH, MDPI, vol. 10(12), pages 1-22, December.
    5. Li Zhang & Karen R. Jonscher & Zuyuan Zhang & Yi Xiong & Ryan S. Mueller & Jacob E. Friedman & Chongle Pan, 2022. "Islet autoantibody seroconversion in type-1 diabetes is associated with metagenome-assembled genomes in infant gut microbiomes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Allison G. White & George S. Watts & Zhenqiang Lu & Maria M. Meza-Montenegro & Eric A. Lutz & Philip Harber & Jefferey L. Burgess, 2014. "Environmental Arsenic Exposure and Microbiota in Induced Sputum," IJERPH, MDPI, vol. 11(2), pages 1-15, February.
    7. Davide Albanese & Carlotta De Filippo & Duccio Cavalieri & Claudio Donati, 2015. "Explaining Diversity in Metagenomic Datasets by Phylogenetic-Based Feature Weighting," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-18, March.
    8. David Martino & Rym Ben-Othman & Danny Harbeson & Anthony Bosco, 2019. "Multiomics and Systems Biology Are Needed to Unravel the Complex Origins of Chronic Disease," Challenges, MDPI, vol. 10(1), pages 1-9, March.
    9. Paul J McMurdie & Susan Holmes, 2014. "Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-12, April.
    10. Yaru Song & Hongyu Zhao & Tao Wang, 2020. "An adaptive independence test for microbiome community data," Biometrics, The International Biometric Society, vol. 76(2), pages 414-426, June.
    11. Tamar Ringel-Kulka & Jing Cheng & Yehuda Ringel & Jarkko Salojärvi & Ian Carroll & Airi Palva & Willem M de Vos & Reetta Satokari, 2013. "Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    12. Miranda Loh & Dimosthenis Sarigiannis & Alberto Gotti & Spyros Karakitsios & Anjoeka Pronk & Eelco Kuijpers & Isabella Annesi-Maesano & Nour Baiz & Joana Madureira & Eduardo Oliveira Fernandes & Micha, 2017. "How Sensors Might Help Define the External Exposome," IJERPH, MDPI, vol. 14(4), pages 1-14, April.
    13. Todd D. Terhune & Richard C. Deth, 2018. "Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation?," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    14. Brian D. Huang & Thomas M. Groseclose & Corey J. Wilson, 2022. "Transcriptional programming in a Bacteroides consortium," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Lara S. Franco & Danielle F. Shanahan & Richard A. Fuller, 2017. "A Review of the Benefits of Nature Experiences: More Than Meets the Eye," IJERPH, MDPI, vol. 14(8), pages 1-29, August.
    16. Thomas A. Auchtung & Christopher J. Stewart & Daniel P. Smith & Eric W. Triplett & Daniel Agardh & William A. Hagopian & Anette G. Ziegler & Marian J. Rewers & Jin-Xiong She & Jorma Toppari & Åke Lern, 2022. "Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Kumar P Mainali & Sharon Bewick & Peter Thielen & Thomas Mehoke & Florian P Breitwieser & Shishir Paudel & Arjun Adhikari & Joshua Wolfe & Eric V Slud & David Karig & William F Fagan, 2017. "Statistical analysis of co-occurrence patterns in microbial presence-absence datasets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
    18. Muntsa Rocafort & David B. Gootenberg & Jesús M. Luévano & Jeffrey M. Paer & Matthew R. Hayward & Juliet T. Bramante & Musie S. Ghebremichael & Jiawu Xu & Zoe H. Rogers & Alexander R. Munoz & Samson O, 2024. "HIV-associated gut microbial alterations are dependent on host and geographic context," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Xiaoxiao Yuan & Ruirui Wang & Bing Han & ChengJun Sun & Ruimin Chen & Haiyan Wei & Linqi Chen & Hongwei Du & Guimei Li & Yu Yang & Xiaojuan Chen & Lanwei Cui & Zhenran Xu & Junfen Fu & Jin Wu & Wei Gu, 2022. "Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Natsuko Tabata & Mai Tsukada & Kozue Kubo & Yuri Inoue & Reiko Miroku & Fumihiko Odashima & Koichiro Shiratori & Takashi Sekiya & Shintaro Sengoku & Hideaki Shiroyama & Hiromichi Kimura, 2022. "Living Lab for Citizens’ Wellness: A Case of Maintaining and Improving a Healthy Diet under the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(3), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28525-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.